Norm范数

解决一个问题》:常用的L2正则化是什么?
L0 范数为神魔是NP-hard问题?
L0范式是什么?

常用范数

L0范数是指向量中非0的元素的个数
L1范数是指向量中各个元素绝对值之和,也有个美称叫“稀疏规则算子”(Lasso regularization)。
L2范数: ||W||2。它也不逊于L1范数,它有两个美称,在回归里面,有人把有它的回归叫“岭回归”(Ridge Regression),有人也叫它“权值衰减weight decay”。

L1 norm就是绝对值相加,又称曼哈顿距离
L2 norm就是欧几里德距离
在这里插入图片描述
基于监督学习的目标函数:
其中,前一项是样本预测值与真实值之间的误差(最小化误差),后一项是正则化函数约束模型使其尽量简单(规范化参数)
在这里插入图片描述
转载:正则

  1. 为什么实现参数的稀疏?

     简化模型、避免过拟合;参数变少使模型具有更好的可解释性。
    
     在很多情况下,一个模型中真正重要的参数并不多,如果考虑所有参数均起作用,这样的模型只拟合了训练数据,对测试数据变得没有泛化能力。
    
  2. 为什么参数值越小模型越简单?

     越复杂的模型,越是会尝试对所有样本进行拟合,甚至包含了一些异常样本点,这种模型容易造成在较小的区间里预测值产生较大的波动,这个波动反映在区间里的导数很大,而只有较大的参数值才能产生较大的导数。因此复杂的模型,参数值会很大。
    

————————————————
版权声明:本文为CSDN博主「Jasonus_Chou」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_32439303/article/details/71709408

1. L0正则化

    L0正则化的值是模型参数中非零参数的个数。

    使用L0正则可得到稀疏的参数以此来防止过拟合。从直观上看,利用非零参数的稀疏性可以进行特征选择实现特征稀疏。


    虽然L0正则优势很明显,但求解困难属于NP问题,因此一般情况下**引入L0正则的最近凸优化L1正则(方便求解)来近似求解并同样可实现稀疏效果。**

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

  1. L1正则化(Lasso问题)

     L1正则化的值是各个参数的绝对值之和。
    
     **L1正则化之所以可以防止过拟合,是因为其范数是参数绝对值之和,而参数大小与模型复杂度成正比**,最小化L1范数可降低模型复杂度。
    
  2. L2正则化(Ridge问题)

     L2正则化的值是各个参数的平方和的开方值。
     
     **L2正则使得参数中每个元素都很小接近于0(仅仅接近,但不为0),这就导致了所有参数都很小**,与L1类似得参数小则模型复杂度低,可有效防止过拟合。
    
  3. Lasso 与 Ridge 对比

     Lasso 和 Ridge 问题可分别表示为如下:
    
     将模型空间限制在参数w的二维情况:
    
     在 (w1,w2) 平面上可以画出目标函数的等高线,而约束条件为平面上半径为C的一个规则化球(norm ball):等高线与norm ball首次相交的地方就是最优解:
    
    
     从上图可知,**对于L1-ball,L1在和每个坐标轴相交的地方都有“角”出现,L1-ball有很大几率与L1交于四个角,即在坐标轴上相遇,因为坐标轴在某一维度为0,从而可以产生稀疏。而等高线与L2-ball相交在坐标轴的几率就很小了**。
    

在这里插入图片描述

    总结:L1趋向于产生少量特征,其它特征均为0;而L2会选择更多趋于0的特征。Lasso适合特征选择,Ridge适合规则化。

————————————————
版权声明:本文为CSDN博主「Jasonus_Chou」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_32439303/article/details/71709408

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YingJingh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值