# MATLAB 中NORM运用

NORM   Matrix or vector norm.
For matrices...
NORM(X) is the largest singular value of X, max(svd(X)).
NORM(X,2) is the same as NORM(X).
NORM(X,1) is the 1-norm of X, the largest column sum,
= max(sum(abs(X))).
NORM(X,inf) is the infinity norm of X, the largest row sum,
= max(sum(abs(X'))).
NORM(X,'fro') is the Frobenius norm, sqrt(sum(diag(X'*X))).
NORM(X,P) is available for matrix X only if P is 1, 2, inf or 'fro'.
For vectors...
NORM(V,P) = sum(abs(V).^P)^(1/P).
NORM(V) = norm(V,2).
NORM(V,inf) = max(abs(V)).
NORM(V,-inf) = min(abs(V)).

1、如果A为矩阵

n=norm(A,p)

 p 返回值 1 返回A中最大一列和，即max(sum(abs(A))) 2 返回A的最大奇异值，和n=norm(A)用法一样 inf 返回A中最大一行和，即max(sum(abs(A’))) ‘fro’ A和A‘的积的对角线和的平方根，即sqrt(sum(diag(A'*A)))

2、如果A为向量

norm(A,p)

norm(A)

norm(A,inf)

norm(A,-inf)

矩阵 (向量) 的范数运算

norm(X) —— 计算矩阵 (向量) X的2-范数;
norm(X,2) —— 同上;
norm(X,1) —— 计算矩阵 (向量) X的1-范数;
norm(X,inf) —— 计算矩阵 (向量) X的无穷范数;
norm(X,'fro') —— 计算矩阵 (向量) X的Frobenius范数;
normest(X) —— 只计算矩阵 (向量) X的2-范数;并且是2-范数的估计值,适用于计算norm(X)比较费时的情况.

• 评论

• 下一篇
• 上一篇