各种norm的理解

0-norm 非零元素的个数


应用,比如要想找出不重叠的数据, 那么表示数据的向量应该尽量正交, 而正交呢就是向量相乘应该为0, 也就是让非零元素的个数尽量少, 所以可以min 0-norm去设计优化函数, 0-norm一般不能解,通常会用1-norm去解


1-norm是元素绝对值相加, 以二维来讲


所以优化的时候会优化到棱形的四个点上, 所以1-norm的优化结果就是大的有值,  小的没值, 


应用: 找出数据中的突变的数据


2-norm的图像是个圆



所以它优化的结果就是使点落在圆上, 当然圆上每个点的概率会一样,所以它的结果就会使元素上都有值, 使元素平滑, 就像热传导方程一样


而1norm就是使曲线变尖, 在值大的地方突出, 在值小的地方为0



对于Mesh来说, 每个点就是一维, 允许点上有大值存在, 就是假设它是outliers


核范数*

核范数的结果就是矩阵的秩, 


应用:矩阵补全,为了使矩阵空间之间的列之间更有关联性,就要使矩阵的秩尽量减小, 那么这个时候就需要他的秩尽量减小,这时就可以minimize矩阵的秩



2,1-norm


2,1-norm ,对于矩阵, 先每列列内平滑, 然后列间找出突出值

应用: 用在视频中的找出场景切换


1.2-norm , 相反先找出每列的突出值, 然后在列间平滑


2-norm称为lasso

2,1-norm称为group lasso

1,2-norm 称为exclusive group lasso







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值