各种norm的理解

0-norm 非零元素的个数


应用,比如要想找出不重叠的数据, 那么表示数据的向量应该尽量正交, 而正交呢就是向量相乘应该为0, 也就是让非零元素的个数尽量少, 所以可以min 0-norm去设计优化函数, 0-norm一般不能解,通常会用1-norm去解


1-norm是元素绝对值相加, 以二维来讲


所以优化的时候会优化到棱形的四个点上, 所以1-norm的优化结果就是大的有值,  小的没值, 


应用: 找出数据中的突变的数据


2-norm的图像是个圆



所以它优化的结果就是使点落在圆上, 当然圆上每个点的概率会一样,所以它的结果就会使元素上都有值, 使元素平滑, 就像热传导方程一样


而1norm就是使曲线变尖, 在值大的地方突出, 在值小的地方为0



对于Mesh来说, 每个点就是一维, 允许点上有大值存在, 就是假设它是outliers


核范数*

核范数的结果就是矩阵的秩, 


应用:矩阵补全,为了使矩阵空间之间的列之间更有关联性,就要使矩阵的秩尽量减小, 那么这个时候就需要他的秩尽量减小,这时就可以minimize矩阵的秩



2,1-norm


2,1-norm ,对于矩阵, 先每列列内平滑, 然后列间找出突出值

应用: 用在视频中的找出场景切换


1.2-norm , 相反先找出每列的突出值, 然后在列间平滑


2-norm称为lasso

2,1-norm称为group lasso

1,2-norm 称为exclusive group lasso







<think>好的,用户让我介绍一下欧几里得范数(Euclidean norm)。首先,我需要回忆一下欧几里得范数的基本概念。欧几里得范数应该就是向量空间中常见的向量长度,也就是L2范数,对吧?比如二维或三维空间中向量的长度,就是欧几里得范数的典型例子。 用户之前问过Kronecker积,现在接着问欧几里得范数,可能是对线性代数中的基本概念感兴趣,或者是在学习相关课程,需要这些基础知识的讲解。我需要确保回答准确且易于理解,特别是用户可能刚接触这个概念,所以需要从定义、公式、性质、应用等方面展开,并给出例子。 首先,定义部分:欧几里得范数定义为向量各元素平方和的平方根。数学表达式是||v||₂ = √(v₁² + v₂² + ... + vₙ²)。这个部分需要解释清楚,可能还要提到它和几何中向量长度的关系,这样用户能联想到实际意义。 接下来是性质,比如非负性、齐次性、三角不等式等。这些都是范数的基本性质,但需要具体到欧几里得范数,比如齐次性中,标量乘以向量的范数等于标量绝对值乘以原范数,这里要注意绝对值,可能容易忽略。另外,三角不等式对应向量加法的长度不超过各自长度之和,可以举例子说明。 应用方面,欧几里得范数在机器学习、优化问题、几何距离计算中都有广泛应用。比如K-means聚类中使用欧氏距离,最小二乘法中的损失函数就是基于欧几里得范数的平方。这部分需要结合实际应用场景,让用户理解其重要性。 可能还需要比较一下其他范数,比如L1范数(曼哈顿距离)、L∞范数(最大值范数),帮助用户区分不同范数的使用场景。例如,L1对异常值更鲁棒,而L2在优化中更平滑,便于求导等。 然后,给出一个具体的计算例子,比如二维或三维向量的计算过程,这样用户能直观看到如何应用公式。例如,向量v = (3, 4),其欧几里得范数是5,符合勾股定理,这样用户容易记住。 另外,可能需要提到欧几里得空间的概念,这是由欧几里得范数定义的内积空间,内积和范数之间的关系,比如内积的平方根就是范数。这可以扩展用户的理解,尤其是如果他们学过内积的话。 在数学符号方面,确保使用正确的LaTeX格式,比如向量用粗体或者箭头表示,范数用双竖线。同时,避免使用过于复杂的术语,保持解释的简洁性。 还要考虑用户可能的疑问点,例如为什么平方后再开根号?可能是为了消除负号的影响,同时保持距离的度量是平滑的。或者为什么欧几里得范数在优化中常用?因为它的可导性较好,方便使用梯度下降等方法。 最后,可能需要给出代码示例,比如用Python的NumPy库计算欧几里得范数,这样用户可以在实际编程中应用。同时指出常见的函数,比如numpy.linalg.norm,并说明参数ord=2对应欧几里得范数。 总结一下,回答的结构应该是:定义、公式、性质、应用、与其他范数的比较、例子、代码实现,以及可能的常见问题解答。确保逻辑清晰,层次分明,帮助用户全面理解欧几里得范数的各个方面。</think>**欧几里得范数(Euclidean Norm)** 是向量空间中最常用的范数之一,用于衡量向量的“长度”或“大小”。它源于欧几里得几何中的距离概念,广泛应用于机器学习、优化问题、物理学和工程学等领域。 --- ### **1. 定义** 对于 \( n \) 维向量 \( \mathbf{v} = (v_1, v_2, \dots, v_n) \),其欧几里得范数(L2 范数)定义为: \[ \|\mathbf{v}\|_2 = \sqrt{v_1^2 + v_2^2 + \cdots + v_n^2} \] 即向量各分量平方和的平方根。 --- ### **2. 几何意义** - **直观解释**:在二维或三维空间中,欧几里得范数对应向量的几何长度。例如: - 二维向量 \( \mathbf{v} = (3, 4) \) 的欧几里得范数为: \[ \|\mathbf{v}\|_2 = \sqrt{3^2 + 4^2} = 5 \] 这正是勾股定理的结果。 - 三维空间中点到原点的距离也通过此公式计算。 --- ### **3. 核心性质** 1. **非负性** \[ \|\mathbf{v}\|_2 \ge 0,且 \|\mathbf{v}\|_2 = 0 \iff \mathbf{v} = \mathbf{0} \] 2. **齐次性(标量乘法的线性性)** \[ \|c \mathbf{v}\|_2 = |c| \cdot \|\mathbf{v}\|_2 \quad (c \text{ 为标量}) \] 3. **三角不等式** \[ \|\mathbf{u} + \mathbf{v}\|_2 \le \|\mathbf{u}\|_2 + \|\mathbf{v}\|_2 \] 4. **与内积的关系** 在欧几里得空间中,范数可通过内积定义: \[ \|\mathbf{v}\|_2 = \sqrt{\mathbf{v} \cdot \mathbf{v}} \] --- ### **4. 典型应用场景** #### **(1) 机器学习与数据科学** - **距离度量**:K-近邻算法(KNN)、K-means 聚类等使用欧氏距离(即两向量差的 L2 范数)衡量样本相似性。 - **正则化(L2 正则化)**:在损失函数中加入权重的 L2 范数惩罚项,防止过拟合(如岭回归)。 #### **(2) 优化问题** - **最小二乘法**:求解线性方程组 \( A\mathbf{x} = \mathbf{b} \) 时,最小化残差的欧几里得范数: \[ \min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\|_2^2 \] #### **(3) 几何与物理学** - **向量长度与能量**:在物理学中,欧几里得范数可表示物体的位移、速度向量的模长或系统的能量。 #### **(4) 归一化处理** - **单位向量化**:将向量除以其欧几里得范数,得到方向单位向量: \[ \hat{\mathbf{v}} = \frac{\mathbf{v}}{\|\mathbf{v}\|_2} \] --- ### **5. 与其他范数的对比** | **范数类型** | **定义** | **特点** | **典型用途** | |--------|------------------------------|--------------------------| | **L1 范数** | \(\|\mathbf{v}\|_1 = \sum_{i=1}^n |v_i|\) | 稀疏性约束(如特征选择) | LASSO 回归、压缩感知 | | **L2 范数** | \(\|\mathbf{v}\|_2 = \sqrt{\sum_{i=1}^n v_i^2}\) | 平滑性、可导性 | 正则化、几何距离 | | **L∞ 范数** | \(\|\mathbf{v}\|_\infty = \max_i |v_i|\) | 关注最大偏差 | 控制最坏情况误差 | --- ### **6. 计算示例** 以向量 \( \mathbf{v} = (1, -2, 2) \) 为例: \[ \|\mathbf{v}\|_2 = \sqrt{1^2 + (-2)^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \] --- ### **7. 代码实现** - **Python(NumPy)**: ```python import numpy as np v = np.array([1, -2, 2]) norm = np.linalg.norm(v, ord=2) # ord=2 表示 L2 范数 print(norm) # 输出 3.0 ``` - **MATLAB**: ```matlab v = [1, -2, 2]; norm = norm(v, 2); % 输出 3 ``` --- ### **8. 数学扩展** - **矩阵的 Frobenius 范数**:可视为将矩阵展开为向量后的欧几里得范数: \[ \|A\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} \] 用于衡量矩阵的整体“大小”。 --- ### **总结** 欧几里得范数是向量空间中最自然的长度度量,其平滑性和可导性使其成为优化问题与机器学习的核心工具。理解 L2 范数及其与其他范数的区别,有助于在实际问题中选择合适的度量或正则化方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值