组合数学2

文章讨论了错位排列的概念,即在一个1到n的排列中,每个数字都不在其对应位置的情况。给出了错位排列的数量f(i)的递推关系式,并提到可以用乘法原理来解释两种构建错位排列的方法。此外,还提到了集合的子集总数以及求n的欧拉函数值来计算质数个数的方法。
摘要由CSDN通过智能技术生成

组合数学 2

错位排列

对于一个 1 , 2 , . . . , n 1,2,...,n 1,2,...,n 的任意排列,有一种情况是第 ∀ i \forall i i 个位置上不是 i i i 的情况,这种排列叫做错位排列

那么方案数 f ( i ) = ( n − 1 ) ( f ( n − 1 ) + f ( n − 2 ) ) f(i) = (n-1)(f(n-1)+ f(n-2)) f(i)=(n1)(f(n1)+f(n2))

边界 f ( i ) f(i) f(i)

证明:

对于错位排列,我们有两种方法

  1. n n n 与前 ( n − 1 ) (n-1) (n1) 个交换,根据乘法原理得 f ( i ) = ( n − 1 ) × f ( i − 1 ) f(i) = (n-1) \times f(i-1) f(i)=(n1)×f(i1)
  2. n n n 在前 ( n − 1 ) (n-1) (n1) 中抽取 1 1 1 个出来,再放回去,根据乘法原理得 f ( i ) = ( n − 1 ) × f ( n − 2 ) f(i) = (n-1) \times f(n-2) f(i)=(n1)×f(n2)

那么根据加法原理 f ( i ) = ( n − 1 ) f ( i − 1 ) + ( n − 1 ) f ( i − 2 ) = ( n − 1 ) f ( i − 1 ) f ( i − 2 ) f(i) = (n-1)f(i-1) + (n-1)f(i-2)=(n-1)f(i-1)f(i-2) f(i)=(n1)f(i1)+(n1)f(i2)=(n1)f(i1)f(i2)

对于证明其非重复性和全面性,这个我目前还不太会证(尴尬)

  • 对于有 n n n 个元素的集合,它的空集就有 ∑ i = 1 n C n i = 2 n \sum_{i=1}^n C_n^i = 2^n i=1nCni=2n ,注意哈,如果空集不算子集的话,那么需要减去 1 1 1

​ 也就是 2 n − 1 2^n - 1 2n1

  • 对于整数 n n n ,求 1 1 1 n n n 质数的个数,也就是求 ϕ ( n ) \phi(n) ϕ(n) 我们可以用欧拉函数来做

    n n n 的唯一分解式, n = ∏ i = 1 n p i a i n = \prod_{i=1}^np_i^{a_i} n=i=1npiai p p p 是质数,有 ϕ ( n ) = n ∏ i = 1 n ( 1 − 1 p ) \phi(n) =n\prod_{i=1}^n(1 - \frac{1}{p}) ϕ(n)=ni=1n(1p1)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值