【算法/剑指Offer】如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。

题目描述

如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。我们使用Insert()方法读取数据流,使用GetMedian()方法获取当前读取数据的中位数。

 

对于数据流,对应的就是在线算法了,一道很经典的题目就是在1亿个数中找到最大的前100个数,这是一道堆应用题,找最大的前100个数,那么我们就创建一个大小为100的最小化堆,每来一个元素就与堆顶元素比较,因为堆顶元素是目前前100大数中的最小数,前来的元素如果比该元素大,那么就把原来的堆顶替换掉。

那么对于这一道题呢?如果单纯的把所有元素放到一个数组里,每次查找中位数最快也要O(n),综合下来是O(n^2)的复杂度。我们可以利用上面例子中的想法,用一个最大堆来维护当前前n/2小的元素,那么每次找中位数只到取出堆顶就可以了。但是,有一个问题,数据要动态增长,有可能之前被替换掉的元素随着元素的增加又跑回来了,所以我们不能单纯得向上题一样把元素丢掉,我们可以再用一个最小化堆来存前n/2大的元素。

class Solution {
    private:
        vector<int> min; //数组中的后一半元素组成一个最小化堆
        vector<int> max; //数组中的前一半元素组成一个最大化堆
    public:
        void Insert(int num) {
            if(((min.size()+max.size()) & 1) == 0) {  //偶数数据的情况下,则在最小堆中插入元素
                if(max.size() > 0 && num < max[0]) {
                    max.push_back(num);
                    push_heap(max.begin(), max.end(), less<int>());
                    num=max[0];
                    pop_heap(max.begin(), max.end(), less<int>());
                    max.pop_back();
                }
                min.push_back(num); //把前一半找到的最大值放到后一半中
                push_heap(min.begin(), min.end(), greater<int>());
            } else {
                if(min.size() > 0 && num > min[0]) {   //奇数数据的情况下,则在最大堆中插入元素
                    min.push_back(num);
                    push_heap(min.begin(), min.end(), greater<int>());
                    num=min[0];
                    pop_heap(min.begin(), min.end(), greater<int>());
                    min.pop_back(); 
                }
                max.push_back(num); //把后一半找到的最大值放到前一半中
                push_heap(max.begin(), max.end(), less<int>());
            }
        }

        double GetMedian() { 
            int size=min.size() + max.size();
            if(size==0) return -1;
            double median = 0;
            if((size&1) != 0) {
                median = (double) min[0];
            } else {
                median = (double) (max[0] + min[0]) / 2;
            }
            return median;
        }
};

也可以使用multiset来简化编程,lintcode上也有原题。

class Solution {
public:
    /**
     * @param nums: A list of integers.
     * @return: The median of numbers
     */
    vector<int> medianII(vector<int> &nums) {
        // write your code here
        multiset<int> left, right;
        vector<int> res;
        bool flag = true;
        for (int n : nums) {
            int tmp = n;
            if (flag) {
                if (!right.empty() && n > *right.begin()) {
                    right.insert(n);
                    tmp = *right.begin();
                    right.erase(right.find(tmp));
                }
                left.insert(tmp);
            } else {
                if (!left.empty() && n < *left.rbegin()) {
                    left.insert(n);
                    tmp = *left.rbegin();
                    left.erase(left.find(tmp));
                }
                right.insert(tmp);
            }
            flag = !flag;
            res.push_back(*left.rbegin());
        }
        return res;
    }
};

还有一道是求滑动窗口中的中位数,其实是基于同样的思想。只是在窗口滑动时,会有元素滑出窗口,所以在插入新的元素之前先要把滑出窗口的元素删除掉。

class Solution {
public:
    /**
     * @param nums: A list of integers.
     * @return: The median of the element inside the window at each moving
     */
    vector<int> medianSlidingWindow(vector<int> &nums, int k) {
        // write your code here
        vector<int> res;
        if (k > nums.size() || k == 0) return res;
        multiset<int> left, right;
        //init heaps by first kth elements in nums
        for (int i = 0; i < k; ++i) {
            left.insert(nums[i]);
        }
        while (left.size() > (k + 1) / 2) {
            right.insert(*left.rbegin());
            left.erase(left.find(*left.rbegin()));
        }
        res.push_back(*left.rbegin());
        //slide window
        for (int i = k; i < nums.size(); ++i) {
            //delete the leftmost element in window from heaps
            if (nums[i-k] > res.back()) right.erase(right.find(nums[i-k]));
            else left.erase(left.find(nums[i-k]));
            //insert new element into heaps
            if (!left.empty() && nums[i] <= *left.rbegin()) left.insert(nums[i]);
            else right.insert(nums[i]);
            //adjust heaps so that the left heap contains (k + 1) / 2 elements
            while (left.size() < (k + 1) / 2) {
                left.insert(*right.begin());
                right.erase(right.begin());
            }
            while (left.size() > (k + 1) / 2) {
                right.insert(*left.rbegin());
                left.erase(left.find(*left.rbegin()));
            }
            res.push_back(*left.rbegin());
        }
        return res;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值