题目描述
如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。我们使用Insert()方法读取数据流,使用GetMedian()方法获取当前读取数据的中位数。
对于数据流,对应的就是在线算法了,一道很经典的题目就是在1亿个数中找到最大的前100个数,这是一道堆应用题,找最大的前100个数,那么我们就创建一个大小为100的最小化堆,每来一个元素就与堆顶元素比较,因为堆顶元素是目前前100大数中的最小数,前来的元素如果比该元素大,那么就把原来的堆顶替换掉。
那么对于这一道题呢?如果单纯的把所有元素放到一个数组里,每次查找中位数最快也要O(n),综合下来是O(n^2)的复杂度。我们可以利用上面例子中的想法,用一个最大堆来维护当前前n/2小的元素,那么每次找中位数只到取出堆顶就可以了。但是,有一个问题,数据要动态增长,有可能之前被替换掉的元素随着元素的增加又跑回来了,所以我们不能单纯得向上题一样把元素丢掉,我们可以再用一个最小化堆来存前n/2大的元素。
class Solution {
private:
vector<int> min; //数组中的后一半元素组成一个最小化堆
vector<int> max; //数组中的前一半元素组成一个最大化堆
public:
void Insert(int num) {
if(((min.size()+max.size()) & 1) == 0) { //偶数数据的情况下,则在最小堆中插入元素
if(max.size() > 0 && num < max[0]) {
max.push_back(num);
push_heap(max.begin(), max.end(), less<int>());
num=max[0];
pop_heap(max.begin(), max.end(), less<int>());
max.pop_back();
}
min.push_back(num); //把前一半找到的最大值放到后一半中
push_heap(min.begin(), min.end(), greater<int>());
} else {
if(min.size() > 0 && num > min[0]) { //奇数数据的情况下,则在最大堆中插入元素
min.push_back(num);
push_heap(min.begin(), min.end(), greater<int>());
num=min[0];
pop_heap(min.begin(), min.end(), greater<int>());
min.pop_back();
}
max.push_back(num); //把后一半找到的最大值放到前一半中
push_heap(max.begin(), max.end(), less<int>());
}
}
double GetMedian() {
int size=min.size() + max.size();
if(size==0) return -1;
double median = 0;
if((size&1) != 0) {
median = (double) min[0];
} else {
median = (double) (max[0] + min[0]) / 2;
}
return median;
}
};
也可以使用multiset来简化编程,lintcode上也有原题。
class Solution {
public:
/**
* @param nums: A list of integers.
* @return: The median of numbers
*/
vector<int> medianII(vector<int> &nums) {
// write your code here
multiset<int> left, right;
vector<int> res;
bool flag = true;
for (int n : nums) {
int tmp = n;
if (flag) {
if (!right.empty() && n > *right.begin()) {
right.insert(n);
tmp = *right.begin();
right.erase(right.find(tmp));
}
left.insert(tmp);
} else {
if (!left.empty() && n < *left.rbegin()) {
left.insert(n);
tmp = *left.rbegin();
left.erase(left.find(tmp));
}
right.insert(tmp);
}
flag = !flag;
res.push_back(*left.rbegin());
}
return res;
}
};
还有一道是求滑动窗口中的中位数,其实是基于同样的思想。只是在窗口滑动时,会有元素滑出窗口,所以在插入新的元素之前先要把滑出窗口的元素删除掉。
class Solution {
public:
/**
* @param nums: A list of integers.
* @return: The median of the element inside the window at each moving
*/
vector<int> medianSlidingWindow(vector<int> &nums, int k) {
// write your code here
vector<int> res;
if (k > nums.size() || k == 0) return res;
multiset<int> left, right;
//init heaps by first kth elements in nums
for (int i = 0; i < k; ++i) {
left.insert(nums[i]);
}
while (left.size() > (k + 1) / 2) {
right.insert(*left.rbegin());
left.erase(left.find(*left.rbegin()));
}
res.push_back(*left.rbegin());
//slide window
for (int i = k; i < nums.size(); ++i) {
//delete the leftmost element in window from heaps
if (nums[i-k] > res.back()) right.erase(right.find(nums[i-k]));
else left.erase(left.find(nums[i-k]));
//insert new element into heaps
if (!left.empty() && nums[i] <= *left.rbegin()) left.insert(nums[i]);
else right.insert(nums[i]);
//adjust heaps so that the left heap contains (k + 1) / 2 elements
while (left.size() < (k + 1) / 2) {
left.insert(*right.begin());
right.erase(right.begin());
}
while (left.size() > (k + 1) / 2) {
right.insert(*left.rbegin());
left.erase(left.find(*left.rbegin()));
}
res.push_back(*left.rbegin());
}
return res;
}
};