关于偏微分、全微分总结

关于偏微分、全微分总结

  1. 偏微分

∂ \partial 偏微分,偏微分是指对一个多元函数 z = f ( x , y ) z=f(x,y) z=f(x,y)中的其中一个变量进行求导,如
z x = ∂ z ∂ x , z y = ∂ z ∂ y z_x=\frac{\partial z}{\partial x},z_y=\frac{\partial z}{\partial y} zx=xzzy=yz

z x x = ∂ 2 z ∂ x 2 , z x y = ∂ 2 z ∂ x ∂ y , z y y = ∂ 2 z ∂ y 2 z_{xx} = \frac{\partial^2 z}{\partial x^2}, z_{xy}=\frac{\partial^2 z}{\partial x\partial y}, z_{yy}=\frac{\partial^2 z}{\partial y^2} zxx=x22z,zxy=xy2z,zyy=y22z
在求导过程中对另一不求导变量做固定处理,可视作与当前所求变量无关,求导时按常数求导即可。

  • 偏微分的物理意义:单一参数的变化,引起的物理量的变化率
  • 偏微分的几何意义:在某点相对于x或y轴的图像的切线斜率
  1. 全微分

d d d全微分,如果函数 z = f ( x , y ) z=f(x, y) z=f(x,y)在(x, y)处的全增量
Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) Δz=f(x+Δx,y+Δy)-f(x,y) Δz=f(x+Δx,y+Δy)f(x,y)

可以表示为
Δ z = A Δ x + B Δ y + o ( ρ ) Δz=AΔx+BΔy+o(ρ) Δz=AΔx+BΔy+o(ρ)

其中A、B不依赖于Δx, Δy,仅与x,y有关, ρ ρ ρ 趋近于0 ( ρ = Δ x 2 + Δ y 2 ρ=\sqrt{Δx^2+Δy^2} ρ=Δx2+Δy2 ),此时称函数z=f(x, y)在点(x,y)处可微分,AΔx+BΔy称为函数z=f(x, y)在点(x, y)处的全微分,记为 d z dz dz
d z = A Δ x + B Δ y dz=AΔx +BΔy dz=AΔx+BΔy

d z = ∂ f ∂ x d x + ∂ f ∂ y d y dz=\frac{\partial f}{\partial x}dx+\frac{\partial f}{\partial y}dy dz=xfdx+yfdy

该表达式称为函数z=f(x, y) 在(x, y)处(关于Δx, Δy)的全微分

  • 全微分的物理意义:所有参数同时变化,所引起函数的整体变化
  • 全微分的几何意义:各个偏微分之和

这里引入一个全导数概念:
全导数是在复合函数中的概念,和全微分的概念不是一个系统,要分开
u = a ( t ) , v = b ( t ) , z = f [ a ( t ) , b ( t ) ] = f ( u , v ) u=a(t),v=b(t),z=f[a(t),b(t)]=f(u,v) u=a(t),v=b(t),z=f[a(t),b(t)]=f(u,v)

d z d t \frac{dz}{dt} dtdz 就是全导数,这是复合函数求导中的一种情况,只有这时才有全导数的概念
d z d t = ∂ z ∂ u ∂ u ∂ t + ∂ z ∂ v ∂ v ∂ t \frac{dz}{dt} =\frac{\partial z}{\partial u}\frac{\partial u}{\partial t}+\frac{\partial z}{\partial v}\frac{\partial v}{\partial t} dtdz=uztu+vztv


  • 11
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值