论文阅读:Read + Verify: Machine Reading Comprehension with Unanswerable Questions
来源:AAAI 2018
摘要:
以前的工作做阅读理解的时候,会预测一个没有答案的概率。但是,他们无法对有答案的结果进行合法性检查,来验证问题的可回答性。
为了解决这个问题,本文提出了一个系统,该系统首先会提取候选答案,然后产生无答案的概率,而且还利用答案验证器来确定预测答案是否由输入片段所包含。
另外,本文引入了两种辅助loss,以及三种不同的答案验证器的体系结构。
Introduction:
现在的阅读理解,默认有正确答案,然而很多情况下并不一定有正确答案。
为了处理无法回答的情况,存在一些难点,系统必须学会识别各种各样的语言现象,例如否定、反义词和段落与问题直接的实体变化。
以前的也有进行答案验证的工作,但他们没有考虑验证预测答案的合法性,来验证问题的可回答性。

系统有两部分组成:1、无答案阅读器,用于提取候选答案并检测无法回答的问题(无答案的概率,NA Prob)。2、答案验证器,用于确定提取的候选答案是否合法。
本文主要工作:
1、用两个辅助损失来增强现有的阅读器,分别来更好的处理答案提取和无答案检测的任务。
2、引入答案验证阶段,为了通过将答案句子与问题进行比较来找到支持答案的局部信息。针对答案验证任务,提出了三种不同的架构。第一个是顺序模型,将两个句子作为一个长序列处理;第二个模型试图捕捉两个句子之间的交互联系;最后一个是混合模型,他结合以上两种模型来测试性能是否可以进一步提升。
3、我们的系统在与答案验证器结合使用时,获得了最好的结果。(F1:74.8和71.5,最好的系统获得F1:74.2)
Background
Task Description

最低0.47元/天 解锁文章

8万+

被折叠的 条评论
为什么被折叠?



