论文笔记:Teaching Machine to Read and Comprehend

这篇论文可以说是阅读理解领域的奠基之作。

文中最主要的收获就是,提出的三种神经网络模型
1. Deep LSTM Reader
处理过程如图,这个图是用两层的lstm来encoder document ||| query对(这个符号|||表示链接),然后再用得到的表示做分类(得到的输出y,再输入到图右g函数,来做判断)。但是这个两层的lstm我暂时的理解是用了两个lstm。这里希望后续能找到源码看一下
这里写图片描述
这里写图片描述
圈出来的部分是我认为对这部分的介绍比较重要的部分,这里面我理解他说的是当我们将doc中的内容一个词一个词先输入到LSTM encoder中,然后在分割符(|||)后,把query也一个词一个词的输入到encoder中。这里作者也尝试了先将query输入encoder,然后再输入doc中的内容。结果却是模型把每个

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值