论文阅读:Dual Reader-Parser on Hybrid Textual and Tabular Evidence for Open Domain Question Answering
来源:ACL 2021
下载地址:https://arxiv.org/pdf/2108.02866.pdf
本文主要贡献:
- 我们提出了一个多模式框架,该框架将混合知识源与用于 ODQA 任务的 Text2SQL 能力相结合。 这是在 ODQA 设置中研究 Text2SQL 的第一项工作。
- 我们提出了一种生成方法,该方法同时采用文本和表格证据并生成直接答案或 SQL 查询,由上下文自动确定。
- 实验表明,可解释的 SQL 生成可以有效地回答需要在 ODQA 设置中进行复杂推理的问题。
Abstract
1、以前研究存在问题:当前最先进的开放域问答(ODQA)生成模型专注于从非结构化文本信息中生成直接答案。 然而,大量世界知识存储在结构化数据库中,需要使用 SQL 等查询语言进行访问。查询语言可以回答需要复杂推理的问题,并提供完整的可解释性。
2、本文主要工作:在本文中,我们提出了一个混合框架,该框架将文本和表格证据作为输入,并根据哪种形式可以更好地回答问题来生成直接答案或 SQL 查询。 然后可以在关联的数据库上执行生成的 SQL 查询以获得最终答案。这是第一篇将 Text2SQL 应用于 ODQA 任务的论文。 根据经验,我们证明了在几个 ODQA 数据集上,混合方法始终优于只采用同质输入的baseline模型。在详细的分析中,证明了能够生成结构化 SQL 查询总能带来收益,尤其是对于那些需要复杂推理的问题。
Introduction
定义:开放域问答 (ODQA) 是一项在没有预先指定域的情况下回答事实性问题的任务。
以前的模型:生成模型取得了先进的性能,但是这些方法都有一个共同的途径,首先从维基百科的自由格式文本中检索证据。
问题:然而,大量的世界知识不是以纯文本形式存储,而是存储在结构化数据库中,需要使用 SQL 等查询语言进行访问。
理想的 ODQA 模型应该能够从非结构化文本和结构化表格信息源中检索证据,因为数据库中的表格证据可以更好地回答某些问题。
本文工作:在本文中,我们提出了一个双阅读器解析器 (DUREPA) 框架,该框架可以将文本和表格数据作为输入,并根据上下文生成直接答案或 SQL 查询。总体而言,我们的框架由三个阶段组成:检索、联合排序和双重阅读解析。
具体流程:首先,我们检索文本和表格类型的支持候选,然后是一个联合重新排序器,预测每个支持候选与问题的相关性,最后我们为我们的 reader-parser 使用解码器融合模型(Izacard And Grave

最低0.47元/天 解锁文章
2400

被折叠的 条评论
为什么被折叠?



