原创 | PC-DMIS中最佳拟合四种方法的选用

在PC-DMIS中,最佳拟合是一种通过调整特征组中元素的实际值和理论值之间的偏差,使其达到最佳状态的方法。PC-DMIS提供了几种最佳拟合方法,包括最小二乘法、矢量最小二乘法、最小最大法和矢量最小最大法。它们主要应用在以下两个方面:

1、最佳拟合坐标系:用于调整和优化坐标系,使得后续的测量结果更加精准和合理;
2、特征或特征组尺寸评价:例如求孔组位置度、复合位置度、轮廓度等。

最佳拟合方法介绍及适用场景

最小二乘法

原理

最小二乘法是最常见的最佳拟合类型,因为其生成的是可重复结果,结果的重复性较好。它的原理是通过最小化所有实测点与理论点的距离的平方和来寻找最佳匹配,这与将平均平方误差最小化的方法相同。注意,最小二乘法的对象是实测点与理论点的直线距离。

适用场景

当需要对齐到特征中心时,可使用最小二乘法。需要注意的是,特征中心要来源于规则特征,如圆或圆柱。

案例

如图所示,如果我们想用图中的8个孔最佳拟合建立坐标系时,这时我们选取的方法应该是最小二乘法,使最佳拟合后的坐标系对齐到8个圆的阵列中心。

图片1.png

“矢量最小二乘法

原理

矢量最小二乘法拟合也是一种最小二乘拟合类型,只是它是将误差矢量投射到标称矢量之上,即通过最小化所有特征矢量偏差的平方和来寻找最佳匹配。注意,矢量最小二乘法的对象是实测点与理论点的矢量偏差。

适用场景

由于复杂曲面的数据是带有唯一矢量的点的集合,对于这些曲面而言,最小二乘法并非理想方法。在这种情况下,矢量最小二乘法拟合属于更佳选项。当不规则的复杂曲面需要对齐时,可以选用矢量最小二乘法。当然,规则的特征曲面如圆、圆柱等需要对齐曲面,而不是特征中心时,也可以选择矢量最小二乘的方法。

案例

如图所示,如果我们在工件的曲面上取点最佳拟合建立坐标系时,这时我们选取的方法应该是矢量最小二乘法,因为这时候我们关注的是曲面的理论位置,因此要使最佳拟合后的坐标系与曲面进行对齐,而不是用最小二乘法与中心对齐。

图片2.png

“最小最大值法

原理

通过最小化所有特征距离中的最大偏差来寻找最佳匹配,即最小最大值拟合可将正在拟合的特征中的最大误差(最大距离)最小化。注意,最小最大值法的对象是实测点与理论点的最大误差(最大距离)。

适用场景

在定特征中心公差时,ASME 和 ISO 标准都是使用最小最大值评估位置公差。特征中心来源于规则特征,如圆或圆柱。

案例

如图所示,当我们评价这8个阵列孔的相对位置(位置度)时,我们关注的是孔中心的公差。最小最大值法可以帮助确定这些孔中心的最大偏差,并将其最小化,同时最小最大值拟合类型与 ASME Y14.5 和 ISO 1101 相符,因此我们评价这个孔组的位置度时需要使用最小最大值法。

图片3.png

矢量最小最大值法

原理

矢量最小最大值法也是最小最大值法的一种,只是它是通过最小化所有特征沿矢量方向的最大偏差来寻找最佳匹配。矢量拟合类型允许点沿着曲面“滑动”,但是不允许离开曲面。所有误差均沿着标称矢量。最小最大值拟合可将正在拟合的特征中的最大偏差(最大距离)最小化。注意,矢量最小最大值法的对象是实测点与理论点的最大矢量偏差。

适用场景

在定曲面公差时,根据 ASME 和 ISO 标准使用矢量最小最大值评估轮廓公差,轮廓度的实测值为矢量最大偏差的2倍。这些曲面可能是规则特征,如圆或圆柱,或者是不规则复杂曲面。

案例

如图所示,当我们评价这个曲面无基准的轮廓度时,我们关注的是曲面的矢量最大偏差。矢量最小最大值法可以帮助确定这个曲面的的最大矢量偏差,并将其最小化,同时矢量最小最大值拟合类型与 ASME Y14.5 和 ISO 1101 相符,因此我们评价这个曲面的轮廓度时需要使用矢量最小最大值法。

### PCDMIS 中最小二乘法与矢量最小二乘法的区别及应用 #### 最小二乘法 (Least Squares Method) 最小二乘法是一种广泛应用于数据拟合的技术,在PCDMIS中用于计算最佳拟合几何形状。该方法通过最小化实际测量点到理想几何体的距离平方和来确定最优位置。这种方法适用于各种类型的几何特征,如直线、平面、圆、球等。 对于简单几何特征(例如圆形或圆柱形),最小二乘法能够提供良好的拟合效果并满足大多数工程需求[^1]。 ```python def least_squares_fit(points): """ 使用最小二乘法对给定点集进行线性回归分析 参数: points (list of tuples): 测量点列表 [(x1, y1), ... , (xn, yn)] 返回: tuple: 斜率m和截距b组成的元组(m,b) """ n = len(points) sum_x = sum_y = sum_xy = sum_xx = 0 for x, y in points: sum_x += x sum_y += y sum_xy += x * y sum_xx += x ** 2 m = (n*sum_xy - sum_x*sum_y)/(n*sum_xx-sum_x**2) b = (sum_y-m*sum_x)/n return m, b ``` #### 矢量最小二乘法 (Vector Least Squares Method) 矢量最小二乘法则是在传统最小二乘基础上引入了方向向量的概念。当处理具有特定方向性的复杂表面时,此方法更为有效。它不仅考虑了距离误差,还加入了角度偏差的影响因子——即所谓的"T"。这使得矢量最小二乘更适合于评估那些既有关联又存在定向关系的零件特性,特别是涉及到曲面公差的情况[^2]。 在具体应用场景下: - 对于规则特征(如圆或圆柱),如果仅需关注其尺寸精度,则可以选择普通的最小二乘算法; - 当面对更复杂的自由形态表面或是需要精确控制某些局部区域的方向属性时,则应优先选用带有矢量修正项的方法来进行更加细致入微的质量检验工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值