最优化理论基础与应用——多元函数分析

多元函数分析

梯度

Hesse矩阵

Jacobi矩阵

梯度:
对于一个n元函数f(x),如果它对自变量的各个分量的偏导数都存在,那么则称由该函数对自变量的各个分量的偏导数组成的向量为函数f(x)在x处的一阶导数,或者是梯度。记作g(x) = ▽f(x).

Hesse矩阵:
梯度是一个n元函数,自变量是一个n维列向量,把一个函数的梯度的各个分量对其自变量各个分量求偏导数,得到一个n*n的方阵,这个方阵我们叫做Hesse矩阵。
在这里插入图片描述

Jacobi矩阵:
一个向量函数,它的自变量的各个分量对该分量的自变量求偏导数,得到的二阶矩阵称为Jacobi矩阵。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值