松灵PiPER机械臂在HybridVLA框架中的创新实践——协作扩散与自回归协同机制的实验验证

前言

 

在具身智能领域,视觉 - 语言 - 动作(VLA)模型是机器人技术发展关键。但现有 VLA 模型在动作生成策略上问题突出:

自回归方法量化动作离散化,破坏动作连续性,影响高精度操作;

扩散方法依赖预训练视觉 - 语言模型特征提取,动态推理能力不足。且多智能体协作时,难以突破单任务局限实现动态协同;

本文以松灵PiPER机械臂和Franka Research 3机械臂为实验载体,通过HybridVLA框架,实现智能体间动态协同,从而有效克服现有VLA模型在动作生成策略及多智能体协作方面存在的困难。

技术框架与核心参数

机器人实验载体

松灵PiPER机械臂:

6轴自由度设计

松灵夹爪

英特尔 D435

Franka Research 3机械臂:

7自由度设计

前端Franka夹爪

技术框架

HybridVLA框架融合扩散与自回归策略

协同训练方案

协同动作集成机制

图片

2:HybridVLA框架。无论采用何种形式,输入数据都会被编码并连接到我们格式化的令牌序列中。为了将扩散集成到LLM中,HybridVLA同时将去噪时间步长和噪声动作投影到令牌序列中。标记标记<BOD>(扩散开始)和<EOD>(扩散结束)旨在弥合这两种生成方法。通过采用协作训练来明确地整合来自两种生成方法的知识,这两种动作类型相互强化,并自适应地组合在一起以控制机器人手臂。对于HybridVLA的输出,通过迭代去噪生成连续动作,而自回归生成离散动作,所有这些都在下一个令牌预测过程中进行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值