【科学计算与数学建模】Keras基础与简单应用

一、数据集的加载


任务描述

本关任务:keras 环境搭建。

相关知识

为了完成本关任务,你需要掌握:1. python 语言基础; 2. 机器学习。

实验目的

学会搭建Keras开发环境,掌握基于TensorFlow的高级API框架Keras的基本用法,通过MNIST手写数字体数据集,学会搭建基于Keras API的神经网络,并用来识别手写数字体。

实验开发环境和工具

可以在Ubuntu18.04操作系统上搭建开发环境,所使用的开发工具包括Anaconda、Tensorflow、Keras,使用Python语言。因为Keras是基于Tensorflow的高层API,所以需要先安装Tensorflow再安装Keras。

实验内容
1. 安装Anaconda和TensorFlow

本实验的开发环境是在Ubuntu18.04环境下安装Anaconda并安装TensorFlow1.10。首先来看一下如何安装Anaconda。 (1) 安装Anaconda 请打开网站 https://www.anaconda.com/download/ 下载适合的Anaconda安装包,因为本实验所采用的开发环境是基于64位的Ubuntu18.04操作系统(Linux的一种版本),所以下载Linux版本的的安装包Anaconda3-5.2.0-Linux-x86_64。 然后请打开系统终端,并在终端下输入以下命令进入所下载的安装包目录Downloads(学员请使用谷歌浏览器,自动保存的文件夹即为Downloads): cd Downloads

接着,请在该目录下输入以下命令并回车运行: bash Anaconda3-5.2.0-Linux-x86_64.sh

最后,在终端输入“ipython”验证Anaconda是否安装成功。

检测条件:没有报错即安装成功。

(2) 安装TensorFlow 2.1) 在终端输入以下命令查看TensorFlow各个版本 anaconda search -t conda tensorflow
执行结果如下:

,

检测条件:控制台出现以上结果。

2.2) 在终端输入以下命令查看可安装的版本地址 anaconda show anaconda/tensorflow
执行结果如下:

,

检测条件:控制台出现以上结果。

2.3) 如上所示,最后一步会提供一个下载地址,请使用以下命令安装TensorFlow: conda install --channel https://conda.anaconda.org/anaconda tensorflow 遇到终端输入提示“Proceed([y]/n)?”,输入“y”即可。
代码执行结果如下:

,

检测条件:控制台出现以上结果。

2.4) 最后,在终端下先输入“python”,然后再输入“import tensorflow”
执行结果如下:

,

检测条件: 不报错则安装成功。

2.安装Keras

(1) 装依赖包 numpy scipy h5py这三个包都是除了tensorflow以为的kearas依赖包,除了h5py以外其他包在前面实验过程中都已经安装,我们此处只需安装h5py即可。
首先用组合键Ctrl+Alt+T打开命令行终端,然后输入pip install h5py完成安装。
安装完成后在终端下输入pip list(或者conda list)查看已安装的包,发现有h5py则安装成功。

检测条件:终端软件安装列表有h5py则安装成功。

(2) 安装Keras
请学员通过快捷键Ctrl+Alt+T打开命令行终端,使用命令pip install keras 来安装
安装完成后在终端下输入pip list(或者conda list)查看已安装的包,发现有keras则安装成功。

检测条件:终端软件安装列表有keras则安装成功

(3) 导入模块
本教程需要导入Keras里的模块。请学员编码实现从Keras的datasets模块中导入数据集mnist模块,从layer.core模块导入Dense和Activation模块,从optimizers 模块导入SGD模块,从utils模块导入np_utils模块。

检测条件:导入模块没有报错

数据预处理

(1) 加载训练集和测试集
请学员通过mnist模块的load_data方法编程实现如下功能:把数据集中的训练数据和测试数据分别赋值给(X_train,y_train)(X_test,yest)两组变量,并通过shape方法查看四个变量的维度是否正确
执行结果如下:

 
  1. (60000,28,28)
  2. (60000,)
  3. (10000,28,28)
  4. (10000)

检测条件:是否输出以上结果。

(2) 重塑训练集和测试集的形状
X_trainX_test如上所示分别是60000×28×2810000×28×28的形状的张量,请通过numpy模块的reshape方法编程实现将其形状重塑为60000×784,10000×784,并使用numpy模块的astype方法将X_train和X_test的元素数据类型改为float32。
然后请学员通过print方法结合X_train/X_test的shape和dtype属性编程实现查看形状和数据类型是否正确。

提示1:numpy模块的reshape方法形式如下:
a.reshape(shape) : 不改变numpy数组a的元素,返回一个shape形状的数组,原数组不变 例:

 
  1. a = np.arange(20)
  2. #原数组不变
  3. In [1]: a.reshape([4,5])
  4. Out[1]:
  5. array([[ 0, 1, 2, 3, 4],
  6. [ 5, 6, 7, 8, 9],
  7. [10, 11, 12, 13, 14],
  8. [15, 16, 17, 18, 19]])

提示2: numpy模块的数组对象的astype方法形式如下:

 
  1. astype(dtype,order ='K',cast ='unsafe',subok = True,copy = True)

参数dytpe表示需要转化的数据类型,其他参数都有缺省值,这里用不到,可以不用管。

代码执行结果:

 
  1. (60000,784)
  2. (10000,784)
  3. float32
  4. float32

检测条件:是否输出以上结果

(3) 归一化
上面我们已经重塑了X_train和X_test的形状,但是mnist图片是通过矩阵存储在计算机里面,矩阵里的每一个元素都是一个像素点,每个像素都转换成了0~255的值,其中0代表白色,255代表黑色。为了方便神经网络的计算,我们需要对像素点进行归一化。
请学员通过编程把X_train和X_test里面的像素点归一化到0-1之间的值,并查看X_train的第2个例子的第100个到150个像素点的值。

代码执行结果:

 
  1. array([0. , 0. , 0. , 0. , 0. ,
  2. 0. , 0. , 0. , 0. , 0. ,
  3. 0. , 0. , 0. , 0. , 0. ,
  4. 0. , 0. , 0. , 0. , 0. ,
  5. 0. , 0. , 0. , 0. , 0. ,
  6. 0. , 0. , 0.2 , 0.62352943, 0.99215686,
  7. 0.62352943, 0.19607843, 0. , 0. , 0. ,
  8. 0. , 0. , 0. , 0. , 0. ,
  9. 0. , 0. , 0. , 0. , 0. ,
  10. 0. , 0. , 0. , 0. , 0. ,
  11. 0. ], dtype=float32)

检测条件:输出以上结果则正确。

(4) one-hot编码
请学员基于Keras的utils模块的to_categorical方法编程实现对Y_train和Y_test的one-hot编码,并打印Y_train前五行看编码是否正确
提示:to_categorical方法的形式如下:
to_categorical(y, num_classes=None)

其中,参数y表示要转换为one-hot编码的类向量,而参数num_classes表示类别的总数。该方法返回的是输入的类向量中所有类别所对应的one-hot编码构成的矩阵。例如,以下代码将类别1和类别3分别转换成对应的one-hot编码。

示例代码:

 
  1. ohl=keras.utils.to_categorical([1,3],num_classes=5)
  2. print(ohl)
  3. 对应的输出结果
  4. [[0. 1. 0. 0. 0.]
  5. [0. 0. 0. 1. 0.]]

代码执行结果:

 
  1. array([[0., 0., 0., 0., 0., 1., 0., 0., 0., 0.],
  2. [1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
  3. [0., 0., 0., 0., 1., 0., 0., 0., 0., 0.],
  4. [0., 1., 0., 0., 0., 0., 0., 0., 0., 0.],
  5. [0., 0., 0., 0., 0., 0., 0., 0., 0., 1.]], dtype=float32

检测条件:输出以上结果则正确

编程要求

根据提示,在右侧编辑器/** Begin **//** End **/ 处补充代码,完成数据的加载、重塑数据集、数据归一化、one-hot 编码。

测试说明

完成对mnist数据集的加载、数据重塑、归一化、转one-hot编码。

平台会对你编写的代码进行测试:

预期输出:

 
  1. (60000, 28, 28)
  2. (60000,)
  3. (10000, 28, 28)
  4. (10000,)
  5. (60000, 784)
  6. (10000, 784)
  7. float32
  8. float32
  9. [0. 0. 0. 0. 0. 0.
  10. 0. 0. 0. 0. 0. 0.
  11. 0. 0. 0. 0. 0. 0.
  12. 0. 0. 0. 0. 0. 0.
  13. 0. 0. 0. 0.2 0.62352943 0.99215686
  14. 0.62352943 0.19607843 0. 0. 0. 0.
  15. 0. 0. 0. 0. 0. 0.
  16. 0. 0. 0. 0. 0. 0.
  17. 0. 0. ]
  18. [[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
  19. [1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  20. [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
  21. [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
  22. [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]
  23. [0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
  24. [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
  25. [0. 0. 0. 1. 0. 0. 0. 0. 0. 0.]
  26. [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
  27. [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]]
  28. [[0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]
  29. [0. 0. 1. 0. 0. 0. 0. 0. 0. 0.]
  30. [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
  31. [1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
  32. [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
  33. [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
  34. [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]
  35. [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]
  36. [0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
  37. [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]]

开始你的任务吧,祝你成功!

代码部分

import numpy as np

from keras.datasets import mnist
from keras.utils import np_utils
from keras import models
from keras import layers


# (X_train, y_train), (X_test, y_test) = mnist.load_data()
path = '/data/workspace/myshixun/step1/mnist.npz'  # mnist数据集的文件路径
# --------------- Begin --------------- #
f = np.load(path)
# X_train, y_train = 
# X_test, y_test = 
(X_train, y_train), (X_test, y_test) = mnist.load_data()
f.close()
# --------------- End --------------- #
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)

# 重塑数据集 转成(-1,784)
# --------------- Begin --------------- #
X_train = X_train.reshape([60000, 784]).astype(dtype='float32')
X_test = X_test.reshape([10000, 784]).astype(dtype='float32')
# --------------- End --------------- #
print(X_train.shape)
print(X_test.shape)
print(X_train.dtype)
print(X_test.dtype)

# 归一化
# --------------- Begin --------------- #
X_train = X_train / 255
X_test = X_test / 255
print(X_train[1][100:150])

# --------------- End --------------- #

# one-hot编码
# --------------- Begin --------------- #
y_train = np_utils.to_categorical([5,0,4,1,9,2,1,3,1,4], num_classes=10)
y_test = np_utils.to_categorical([7,2,1,0,4,1,4,9,5,9], num_classes=10)
# --------------- End --------------- #
print(y_train[:10])
print(y_test[:10])

二、数据集的加载


任务描述

本关任务:神经网络的搭建及训练。

相关知识

为了完成本关任务,你需要掌握:1. 神经网络的搭建 2.神经网络的训练

实验目的

学会搭建Keras开发环境,掌握基于TensorFlow的高级API框架Keras的基本用法,通过MNIST手写数字体数据集,学会搭建基于Keras API的神经网络,并用来识别手写数字体。

实验开发环境和工具

可以在 Ubuntu18.04 操作系统上搭建开发环境,所使用的开发工具包括 Anaconda、Tensorflow、Keras,使用 Python 语言。因为Keras是基于 Tensorflow 的高层 API,所以需要先安装 Tensorflow 再安装 Keras。

实验内容
搭建神经网络
添加层

Keras的原始构造模块就是模型,最简单的模型称为序列模型,即Sequential模型。接下来,我们来通过序列模型构建最基本的神经网络----感知机。感知机的模型如下:

,

请学员编程实现如下功能:首先创建一个序列模型对象 model;并调用 model 对象的add方法添加一个全连接层(全连接层在Keras中用Dense类来表示),其输出维度是10,输入维度是784;然后再通过add方法给输出层添加一个激活层(激活层在Keras中用Activation类来表示)得到最后输出;最后通过model的summary方法查看模型是否正确。

提示1:可以通过 Sequential类的构造方法来构建一个Keras序列模型对象。
model = Sequential()

提示2: 可通过如下add方法的形式来将一个个layer加入模型model中
model.add(layer)

其中Model是我们通过Sequential类构造的序列模型对象,然后调用add()方法添加层来搭建神经网络,其中layer可以是全连接层也可以是其它常用的神经网络层结构,层的具体定义后续会讲解。

提示3: Dense类的构造方法形式如下:
Dense(units,activation=None,use_bias=True, kernel_initializer='glorot_uniform',bias_initializer='zeros',kernel_regularizer=None,bias_regularizer=None,activity_regularizer=None,kernel_constraint=None,bias_constraint=None)

虽然参数很多,但是我们实际中使用只需要注明几个显著的参数即可。
其中参数units表示该层的输出维度,为大于0的整数,其余的参数都有缺省值,在这里用不到。

  • use_bias:布尔值,是否使用偏置项

注意如果第一层就是全连接层需要使用参数input_shape指定输入大小。

提示4:Activation类的构造方法形式如下:
Activation(activation)

其中参数activation表示用于神经网络的激活函数

代码执行结果:

 
  1. _________________________________________________________________
  2. Layer (type) Output Shape Param #
  3. =================================================================
  4. dense_2 (Dense) (None, 10) 7850
  5. _________________________________________________________________
  6. activation_2 (Activation) (None, 10) 0
  7. =================================================================
  8. Total params: 7,850
  9. Trainable params: 7,850
  10. Non-trainable params: 0
  11. ________________________

检测条件:输出以上内容则正确

编译神经网络

在定义好神经网络模型后,需要对模型进行编译,已有经过编译,模型才能由Keras的后端(Theao或Tensorflow)来执行。
请学员编程实现以下功能:通过model对象的compile方法来对模型进行编译。

提示:compile 方法有三个参数,其中参数 loss 表示损失函数,这里应该用categorical_crossentropy作为损失函数;参数 optimizer表示所采用的优化算法,这里可以用SGD方法;参数metrics表示性能评估指标,这里可以用accuracy作为性能评估指标。

检测条件:需对代码进行判断

训练神经网络

一旦编译完模型,就可以用model对象的fit方法进行模型的训练。
请学员编程实现以下功能:用fit方法来训练神经网络。
提示:fit方法的形式如下:

 
  1. fit(self, x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None, validation_steps=None)

虽然参数很多,但是我们实际中使用只需要注明几个显著的参数即可。

  • x:输入数据。如果模型只有一个输入,那么x的类型是numpy数组,如果模型有多个输入,那么x的类型应当为list,list的元素是对应于各个输入的numpy array。
  • y:标签,numpy 数组。如果模型有多个输出,可以传入一个numpy 数组的list。
  • batch_size:整数,指定进行梯度下降时每个batch包含的样本数。训练时一个
  • batch的样本会被计算一次梯度下降,使目标函数优化一步。
  • epochs:整数,训练终止时的epoch值,训练将在达到该epoch值时停止
  • verbose:日志显示,0为不在标准输出流输出日志信息,1为输出进度条记录,2为每个epoch输出一行记录
  • validation_split:0~1之间的浮点数,用来指定训练集的一定比例数据作为验证集。验证集将不参与训练,并在每个epoch结束后测试的模型的指标,如损失函数、精确度等。

其中参数x,y分别对应X_train, Y_train,参数batch_sze可设置为128,参数epochs可设置为200,参数verbose设置为1,参数validation_split设置为0.2

代码执行结果:

 
  1. Train on 48000 samples, validate on 12000 samples
  2. Epoch 1/200
  3. 48000/48000 [==============================] - 1s 19us/step - loss: 1.3633 - acc: 0.6796 - val_loss: 0.8904 - val_acc: 0.8246
  4. Epoch 2/200
  5. 48000/48000 [==============================] - 1s 15us/step - loss: 0.7913 - acc: 0.8272 - val_loss: 0.6572 - val_acc: 0.8546
  6. Epoch 3/200
  7. 48000/48000 [==============================] - 1s 15us/step - loss: 0.6436 - acc: 0.8497 - val_loss: 0.5625 - val_acc: 0.8681
  8. Epoch 4/200
  9. 48000/48000 [==============================] - 1s 15us/step - loss: 0.5717 - acc: 0.8602 - val_loss: 0.5098 - val_acc: 0.8765
  10. Epoch 5/200
  11. 48000/48000 [==============================] - 1s 15us/step - loss: 0.5276 - acc: 0.8678 - val_loss: 0.4758 - val_acc: 0.8826
  12. .
  13. .
  14. Epoch 195/200
  15. 48000/48000 [==============================] - 1s 19us/step - loss: 0.2767 - acc: 0.9231 - val_loss: 0.2760 - val_acc: 0.9239
  16. Epoch 196/200
  17. 48000/48000 [==============================] - 1s 18us/step - loss: 0.2766 - acc: 0.9226 - val_loss: 0.2758 - val_acc: 0.9241
  18. Epoch 197/200
  19. 48000/48000 [==============================] - 1s 14us/step - loss: 0.2765 - acc: 0.9229 - val_loss: 0.2758 - val_acc: 0.9242
  20. Epoch 198/200
  21. 48000/48000 [==============================] - 1s 14us/step - loss: 0.2763 - acc: 0.9231 - val_loss: 0.2758 - val_acc: 0.9236
  22. Epoch 199/200
  23. 48000/48000 [==============================] - 1s 14us/step - loss: 0.2762 - acc: 0.9229 - val_loss: 0.2757 - val_acc: 0.9241
  24. Epoch 200/200
  25. 48000/48000 [==============================] - 1s 15us/step - loss: 0.2761 - acc: 0.9230 - val_loss: 0.2756 - val_acc: 0.9241

检测条件:输出的结果准确率acc和loss与上面接近即正确。

评估神经网络

一旦模型训练完成,我们就可以在全新的样本测试集上进行评估,来观察模型的好坏。

请学员编程实现以下功能:
1)使用model对象的evaluate方法来评估模型,并将evaluate的返回值保存到变量score中
2)然后打印score的第一项和第二项值,查看总的损失值和准确率。

提示:evaluate()定义形式如下: evaluate(self, x, y, batch_size=32, verbose=1, sample_weight=None)

  • x:输入数据
  • y:标签
  • batch_size:整数,含义同fit的同名参数
  • verbose:含义同fit的同名参数,但只能取0或1
  • evaluate方法前2个参数是测试集特征和标签(可以分别用X_test和Y_test),verbose ,可设置为1,其它参数可以不用考虑。

代码执行结果:

 
  1. 10000/10000 [==============================] - 0s 24us/step
  2. Test score 0.27740466350317
  3. Test accuracy 0.9213

检测条件:总的损失和准确率接近即正确。

优化神经网络
模型改进

之前构建了一个最简单的神经网络。实际上,构建神经网络的时候可以同时添加层和激活函数,如下所示:
model.add(Dense(10,input_shape = (784,)),activation = ’softmax’)

请学员编程实现以下功能:在上述最基本的神经网络基础上通过add方法加一个隐藏层,隐藏层的输出维度是128,激活函数是’relu’,同时输出层不再是一个单一的激活函数,而是用Dense定义全连接输出层,其中输出维度是10,激活函数是’softmax’,注意,此时我们的输入层的的输出的激活函数是’relu’.然后通过summary.model()方法查看构建是否正确

代码执行结果:

 
  1. Layer (type) Output Shape Param #
  2. =================================================================
  3. dense_3 (Dense) (None, 128) 100480
  4. _________________________________________________________________
  5. dense_4 (Dense) (None, 128) 16512
  6. _________________________________________________________________
  7. dense_5 (Dense) (None, 10) 1290
  8. =================================================================
  9. Total params: 118,282
  10. Trainable params: 118,282
  11. Non-trainable params: 0

检测条件:得到如上左右结果则代表正确:

编译神经网络

请学员编程实现以下功能:通过model对象的compile方法来对模型编译,其中参数loss用categorical_crossentropy,参数optimizer用SGD,参数metrics选用’accuracy’

检测条件:需对代码进行判断

训练神经网络

请学员编程实现以下功能:用fit方法来训练神经网络,其中batch_sze设置为128,epochs设置为20,verbose设置为1,validation_split设置为0.2。

代码执行结果:

 
  1. Train on 48000 samples, validate on 12000 samples
  2. Epoch 1/20
  3. 48000/48000 [==============================] - 6s 131us/step - loss: 1.4590 - acc: 0.6352 - val_loss: 0.7348 - val_acc: 0.8351
  4. Epoch 2/20
  5. 48000/48000 [==============================] - 1s 29us/step - loss: 0.5887 - acc: 0.8514 - val_loss: 0.4486 - val_acc: 0.8847
  6. Epoch 3/20
  7. 48000/48000 [==============================] - 2s 34us/step - loss: 0.4353 - acc: 0.8807 - val_loss: 0.3711 - val_acc: 0.9003
  8. Epoch 4/20
  9. 48000/48000 [==============================] - 1s 30us/step - loss: 0.3767 - acc: 0.8947 - val_loss: 0.3339 - val_acc: 0.9069
  10. Epoch 5/20
  11. 48000/48000 [==============================] - 1s 29us/step - loss: 0.3430 - acc: 0.9035 - val_loss: 0.3088 - val_acc: 0.9136
  12. Epoch 16/20
  13. 48000/48000 [==============================] - 2s 31us/step - loss: 0.2140 - acc: 0.9385 - val_loss: 0.2063 - val_acc: 0.9410
  14. Epoch 17/20
  15. 48000/48000 [==============================] - 2s 31us/step - loss: 0.2074 - acc: 0.9406 - val_loss: 0.2010 - val_acc: 0.9434
  16. Epoch 18/20
  17. 48000/48000 [==============================] - 2s 32us/step - loss: 0.2016 - acc: 0.9420 - val_loss: 0.1973 - val_acc: 0.9442
  18. Epoch 19/20
  19. 48000/48000 [==============================] - 2s 32us/step - loss: 0.1961 - acc: 0.9440 - val_loss: 0.1929 - val_acc: 0.9447
  20. Epoch 20/20
  21. 48000/48000 [==============================] - 2s 32us/step - loss: 0.1906 - acc: 0.9453 - val_loss: 0.1885 - val_acc: 0.9476
  22. 10000/10000 [==============================] - 0s 30us/step

检测条件:输出的结果准确率acc和loss与上面接近即正确。

评估神经网络

请学员编程实现以下功能:使用evaluate函数来评估模型。
其中参数x,y分别对应测试集的数据和标签,verbose设置为1,其余参数可以忽略。并将evaluate的返回值赋值给score,然后打印score的第一项和第二项值,查看总的损失值和准确率。

代码执行结果:

 
  1. 10000/10000 [==============================] - 0s 24us/step
  2. Test score: 0.18817616567984224
  3. Test accuracy: 0.9452

检测条件:输出的结果准确率acc和loss与上面接近即正确。

总结

我们通过增加2个隐藏层,让准确率提升了2.2%,然而我们的迭代次数从200显著减少到了20,说明了我们的神经网络得到了很好的改善。

编程要求

根据提示,在右侧编辑器 / Begin // End / 处补充代码,完成模型的构建、模型的编译、模型的训练以及模型的预测。

测试说明

搭建神经网络,并利用神经网络对mnist数据集进行训练。

平台会对你编写的代码进行测试:

预期输出:通关成功!


开始你的任务吧,祝你成功!

代码部分

import numpy as np

from keras.datasets import mnist
from keras.utils import np_utils
from keras import models
from keras import layers


def mnist():
    # (X_train, y_train), (X_test, y_test) = mnist.load_data()
    path = '/data/workspace/myshixun/step1/mnist.npz'  # mnist数据集的文件路径
    f = np.load(path)
    X_train, y_train = f['x_train'], f['y_train']
    X_test, y_test = f['x_test'], f['y_test']
    f.close()

    # 重塑数据集
    X_train = X_train.reshape([60000, 784])
    X_test = X_test.reshape([10000, 784])

    X_train = X_train.astype(np.float32)
    X_test = X_test.astype(np.float32)

    # 归一化
    X_train = X_train / 255
    X_test = X_test / 255

    # one-hot编码
    y_train = np_utils.to_categorical(y_train)
    y_test = np_utils.to_categorical(y_test)

    # build model
    # --------------- Begin --------------- #
    from keras import models, Sequential
    from keras.layers import Dense, Activation

    model = Sequential()
    # model.add(Dense(10,input_shape = (784,)))
    model.add(Dense(units=10, activation='softmax', input_shape=(784,)))
    model.add(Activation('relu'))
    model.build()
    model.summary()
    
    # train model
    model.compile (optimizer='SGD', loss='categorical_crossentropy', metrics= ['accuracy']) 
    # model.fit(x=X_train, y=y_train, batch_size=128, epochs=200, verbose=1, validation_split=0.2)
    model.fit(x=X_train, y=y_train, batch_size=128, epochs=6, verbose=1, validation_split=0.2)
    score =model.evaluate(x=X_test, y=y_test,verbose=1)

    test_loss = score[0]
    test_acc = score[1]
    # --------------- End --------------- #
    # print("test_loss:", test_loss, "\ntest_acc:", test_acc)
    return test_loss,test_acc,model

  • 12
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值