车辆多标签实时识别算法:基于改进的YOLOv5和VGGNet

127 篇文章 34 订阅 ¥59.90 ¥99.00
本文提出了一种基于改进YOLOv5和VGGNet的车辆多标签实时识别算法,应用于交通监控、智能驾驶等领域。通过结合YOLOv5的快速目标检测和VGGNet的特征提取,实现高效准确的车辆类型、颜色、品牌等信息识别。
摘要由CSDN通过智能技术生成

引言:
车辆多标签实时识别是计算机视觉领域中的重要任务之一,它在交通监控、智能驾驶和城市规划等领域具有广泛的应用。本文提出了一种基于改进的YOLOv5和VGGNet的车辆多标签实时识别算法,通过结合YOLOv5的快速目标检测和VGGNet的强大特征提取能力,实现了高效准确的车辆多标签识别。以下将详细介绍算法原理,并提供相应的源代码示例。

算法原理:

  1. 数据集准备:
    在车辆多标签识别任务中,需要准备一个包含车辆图像及其对应标签的数据集。数据集中的标签可以包括车辆类型、颜色、品牌等信息。通过手动标注或自动化工具对数据集进行标注,生成每个图像对应的标签信息。

  2. 网络架构:
    本文使用了改进的YOLOv5和VGGNet作为网络的主要组成部分。YOLOv5是一种快速而准确的目标检测算法,它通过将图像划分为不同的网格单元,在每个单元中预测目标的边界框和类别信息。VGGNet是一种经典的卷积神经网络,具有强大的特征提取能力。

  3. 网络训练:
    首先,使用预训练的VGGNet网络对车辆图像进行特征提取。将每个图像的特征表示作为输入,通过全连接层预测各个标签的概率。然后,使用改进的YOLOv5对图像进行目标检测,得到车辆的边界框和类别信息。通过计算预测框和真实框之间的损失函数,优化网络参数,使得预测结果与真实标签尽可能接近。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值