Pytorch 加载数据集的几种方法

本文介绍了PyTorch中加载数据集的三种方法,包括直接使用torchvision.datasets加载MNIST数据集,并通过DataLoader进行批处理。文中强调了Dataset和DataLoader的区别,Dataset存储样本及其标签,而DataLoader提供了便捷的数据访问方式。同时,还提及了数据集可视化的处理以及如何自定义Dataset。最后,提供了官方文档链接以供深入学习。
摘要由CSDN通过智能技术生成

Pytorch 加载数据集的几种方法

总结

方案1:

 

方案2:

train_dataset = torchvision.datasets.MNIST(root='./data',
                                           train=True,
                                           transform=transforms.ToTensor(),
                                           download=True)

test_dataset = torchvision.datasets.MNIST(root='./data',
                                          train=False,
                                          transform=transforms.ToTensor())

# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=batch_size,
                                          shuffle=False)

在for循环中调用

for i, (images, labels) in enumerate(train_loader):

方案3:官网的介绍

Dataset stores the samples and their corresponding labels

Dataset 包含数据样本和相应的标签labels;

DataLoader wraps an iterable around the Dataset to enable easy access to the samples.

DataLoader 相当于是对dateset的一个迭代器封装;

对数据集中的数据,进行可视化;

 

构建自己的dataset

Datasets & DataLoaders — PyTorch Tutorials 1.11.0+cu102 documentation

官方文档YYDS

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值