单因素方差分析和多因素方差分析的差异是什么?
(1)两者之间的差异是变量的数量。
单因素方差分析:只有一个独立变量。 多因素方差分析:有两个独立变量。
(2)两种统计方法对应的H0假设是不一样的。 单因素方差分析的H0假设为,三组之间的均值没有显著性差异。 多因素方差分析two-way的H0假设为,两个变量之间没有相互交互作用。
举例:
比如说你想观察儿子的身高(连续变量),那么你可以讨论:父亲身高对儿子身高,以及母亲身高对儿子身高的影响。你认为影响观测样本的量有两个,一个是父亲身高(必须分级:高,中,低),一个是母亲身高(必须分级:高,中,低)。 每个小组的样本量要一样;
那么这个时候就要用:two-way ANOVA进行分析了。检测的H0假设是:父亲的身高对儿子身高没有影响;母亲的身高对儿子的身高没有影响;父亲身高和母亲身高之间没有相互作用。
之前写的博客很详细: