菜鸡HP的被虐日常(13)当三角熬成数列

B y H o l y P u s h By\quad HolyPush ByHolyPush

幸好聪明的 t x l txl txl告诉愚蠢的 H P HP HP生成函数一般在数学中用的比较少,在信息竞赛里用的比较多,愚蠢的 H P HP HP就放下了心。

聪明的 t x l txl txl仿佛感受到了虐爆愚蠢的 H P HP HP的快感,于是又打算给他来一点奇奇怪怪的东西。

已知正项数列 { a n } , S n \{a_n\},S_n {an},Sn表示该数列的前 n n n项和,并且 a n S n = 1 4 n a_nS_n=\frac{1}{4^n} anSn=4n1,求 a n a_n an的通项公式。

愚蠢的 H P :    c j HP:\; cj HP:cj上课讲过,如果出现了 S n S_n Sn,可以利用 S n − S n − 1 = a n S_n-S_{n-1}=a_n SnSn1=an的性质来将 S n S_n Sn化掉惹。
聪明的 t x l :    txl:\; txl:没错。提一点没用的,对于数列 { a n } \{a_n\} {an},记 Δ a 1 = a 2 − a 1 , Δ a 2 = a 3 − a 2 . . . , Δ a n = a n + 1 − a n \Delta a_1=a_2-a_1,\Delta a_2=a_3-a_2...,\Delta a_n=a_{n+1}-a_n Δa1=a2a1,Δa2=a3a2...,Δan=an+1an,则可以称 { Δ a n } \{\Delta a_n\} {Δan} { a n } \{a_n\} {an}的一阶差分数列。也就是说,本题中 { a n } \{a_n\} {an} { S n } \{S_n\} {Sn}的一阶差分数列。目前你并不需要知道这些东西。
愚蠢的 H P :    HP:\; HP:好八。第一步肯定是把原式化成 S n = 1 4 n a n S_n=\frac{1}{4^na_n} Sn=4nan1,再写一遍 S n − 1 = 1 4 n − 1 a n − 1 S_{n-1}=\frac{1}{4^{n-1}a_{n-1}} Sn1=4n1an11,两式相减得到 a n = 1 4 n ( 1 a n − 4 a n − 1 ) a_n=\frac{1}{4^n}(\frac{1}{a_n}-\frac{4}{a_{n-1}}) an=4n1(an1an14)。然后我就不会了厚 … … ……
聪明的 t x l :    txl:\; txl:首先这个结构很丑,不如把 4 n 4^n 4n乘到左边去,然后 a n a_n an一个在分母一个在分子也挺令人不爽的,不如两边再同时乘一个 a n a_n an。这样最后的结果是 4 n a n 2 = 1 − 4 a n a n − 1 4^na_n^2=1-\frac{4a_n}{a_{n-1}} 4nan2=1an14an
愚蠢的 H P :    HP:\; HP:这结构我看着更不舒服了厚。
聪明的 t x l :    txl:\; txl:看到 4 n a n 2 4^na_n^2 4nan2这么令人讨厌的项,你就应该想到换元构造新数列。不如令 b n = 2 n a n b_n=2^na_n bn=2nan,那么原式可以化为 b n 2 = 1 − 2 b n b n − 1 b_n^2=1-\frac{2b_n}{b_{n-1}} bn2=1bn12bn

看到这个结构你应该为之一震,并且想到, b n − 1 b_{n-1} bn1可以用 b n b_n bn表示出来。
可以容易发现 b n − 1 = 2 b n 1 − b n 2 b_{n-1}=\frac{2b_n}{1-b_n^2} bn1=1bn22bn

仿佛陷入了瓶颈 … … ……
愚蠢的 H P HP HP在想了 5249 5249 5249分钟之后,终于发现,这个式子为什么和 t a n tan tan的和角公式如此相似。

再进行一步换元,令 t a n θ n = b n tan_{\theta_n}=b_n tanθn=bn,则 t a n θ n − 1 = 2 t a n θ n 1 − t a n θ n 2 = t a n 2 θ n tan_{\theta_{n-1}}=\frac{2tan{\theta_n}}{1-tan^2_{\theta_n}}=tan_{2\theta_n} tanθn1=1tanθn22tanθn=tan2θn
方便一点我们就可以直接说 θ n − 1 = 2 θ n \theta_{n-1}=2\theta_n θn1=2θn,当然并不一定只有这一种关系,但这种关系是最显而易见的。

接下来我们只需要确定 θ 1 \theta_1 θ1是多少就好了。
根据 a 1 S 1 = 1 4 , a_1S_1=\frac{1}{4}, a1S1=41,以及 a n a_n an各项为正,可以得到 a 1 = 1 2 a_1=\frac{1}{2} a1=21,则 b 1 = 1 , b_1=1, b1=1,得到 θ 1 = π 4 \theta_1=\frac{\pi}{4} θ1=4π。再根据 θ n = 1 2 θ n − 1 \theta_n=\frac{1}{2}\theta_{n-1} θn=21θn1,得到 θ n = π 2 n + 1 \theta_n=\frac{\pi}{2^{n+1}} θn=2n+1π。倒推回去可以得到 a n = t a n π 2 n + 1 2 n a_n=\frac{tan_{\frac{\pi}{2^{n+1}}}}{2^n} an=2ntan2n+1π

聪明的 t x l txl txl对这种做法表示了极大的认可,但是他认为这种做法没有普遍性。所以他给出了另一道题。

已知 a 1 = 1 , { S n } a_1=1,\{S_n\} a1=1,{Sn}是数列 { a n } \{a_n\} {an}的前 n n n项和, a n + 1 = S n 2 + S n + 1 a_{n+1}=\sqrt{S_n^2+S_n+1} an+1=Sn2+Sn+1 ,求 a n a_n an的通项公式。

首先第一步当然是平方, a n + 1 2 = S n 2 + S n + 1 a^2_{n+1}=S_n^2+S_n+1 an+12=Sn2+Sn+1
愚蠢的 H P HP HP看到 S n S_n Sn头上的二次方,瞬间没辙了,因为头上有二次方就很难用 S n − S n − 1 = a n S_n-S_{n-1}=a_n SnSn1=an化掉。
聪明的 t x l : txl: txl:你不要老是想着把 S n S_n Sn变成 a n a_n an啊,这个式子有 3 3 3 S n S_n Sn但只有 1 1 1 a n + 1 a_{n+1} an+1,你为什么不把 a n + 1 a_{n+1} an+1换掉呢?
愚蠢的 H P HP HP黄然大物。

( S n + 1 − S n ) 2 = S n 2 + S n + 1 (S_{n+1}-S_n)^2=S_n^2+S_n+1 (Sn+1Sn)2=Sn2+Sn+1,得到 S n + 1 2 − 2 S n S n + 1 = S n + 1 S^2_{n+1}-2S_nS_{n+1}=S_n+1 Sn+122SnSn+1=Sn+1。然后愚蠢的 H P HP HP又不会了。
聪明的 t x l : txl: txl:我刚刚不是给你指引过了吗,看到 S n S_n Sn是一次,你就不会想到用 S n + 1 S_{n+1} Sn+1表示 S n ? S_n? Sn?

S n = S n + 1 2 − 1 2 S n + 1 + 1 S_n=\frac{S_{n+1}^2-1}{2S_{n+1}+1} Sn=2Sn+1+1Sn+121。这个式子和上面一道题的式子太像了,但是又感觉不像,因为这个式子看起来根本不是能换元的样子。

为了视觉上好受一点,令 T n = 2 S n + 1 T_n=2S_n+1 Tn=2Sn+1,则原式可转化为 T n = T n + 1 2 − 3 2 T n + 1 。 T_n=\frac{T_{n+1}^2-3}{2T_{n+1}}。 Tn=2Tn+1Tn+123并没有什么发现。

聪明的 t x l txl txl满足地看着愚蠢的 H P HP HP在草稿纸上用了将近十页企图凑出个三角换元,最后不得不将草稿纸摔在地上的样子。
聪明的 t x l :    txl:\; txl:算了吧,还是我来教你。这里有一个技巧叫做不动点。我们求解这种数列的通项公式,本质上是要凑出一个等比数列或者等差数列。我们知道二阶递推式我们可以用特征方程来解决,像这种分式我们一般也有套路,那就是不动点。

不动点的原理自行度娘 ( ( (因为本人也不知道 ) ) ),这里直接说用法了。
将这个分式中的每一项都写成 x x x,得到一个方程,等式两边同时减掉方程的某一个根,可以出现结构优异的式子。

题中递推式可以写成 x = x 2 − 3 2 x x=\frac{x^2-3}{2x} x=2xx23,得到方程 x 2 = − 3 x^2=-3 x2=3
愚蠢的 H P HP HP被这个奇怪的方程吓得找不到胸了。
但是并不需要担心,因为复数是有用的工具, x = ± 3 i x=±\sqrt{3}i x=±3 i

然后就是套路了。两边同时减去 3 i \sqrt{3}i 3 i,得到 T n − 3 i = ( T n + 1 − 3 i ) 2 2 T n + 1 T_n-\sqrt{3}i=\frac{(T_{n+1}-\sqrt{3}i)^2}{2T_{n+1}} Tn3 i=2Tn+1(Tn+13 i)2。看着是挺优美的,但有什么用呢?
聪明的 t x l :    txl:\; txl:这不是有两个根吗 ?    ?\; ?把另一个根也用上吧。

两边同时加上 3 i \sqrt{3}i 3 i,得到 T n + 3 i = ( T n + 1 + 3 i ) 2 2 T n + 1 T_n+\sqrt{3}i=\frac{(T_{n+1}+\sqrt{3}i)^2}{2T_{n+1}} Tn+3 i=2Tn+1(Tn+1+3 i)2

两式相除。
T n + 3 i T n − 3 i = ( T n + 1 + 3 i T n + 1 − 3 i ) 2 \frac{T_{n}+\sqrt{3}i}{T_{n}-\sqrt{3}i}=(\frac{T_{n+1}+\sqrt{3}i}{T_{n+1}-\sqrt{3}i})^2 Tn3 iTn+3 i=(Tn+13 iTn+1+3 i)2
然后就可以愉快地令 g n = T n + 3 i T n − 3 i , g_n=\frac{T_{n}+\sqrt{3}i}{T_{n}-\sqrt{3}i}, gn=Tn3 iTn+3 i,就有 g n = g n + 1 2 g_n=g_{n+1}^2 gn=gn+12,所以 g n = g 1 2 1 − n g_n=g_1^{2^{1-n}} gn=g121n然后我们就只需要知道 g 1 g_1 g1是多少就可以了。

仔细一算, S 1 = a 1 = 1 , T 1 = 2 S 1 + 1 = 3 , S_1=a_1=1,T_1=2S_1+1=3, S1=a1=1,T1=2S1+1=3, g 1 = 3 + 3 i 3 − 3 i = 1 + 3 i 2 g_1=\frac{3+\sqrt{3}i}{3-\sqrt{3}i}=\frac{1+\sqrt{3}i}{2} g1=33 i3+3 i=21+3 i。这个式子令人极为振奋。这已经告诉我们要使用极坐标了。 g 1 g_1 g1写成极坐标就是 ( 1 , π 3 ) (1,\frac{\pi}{3}) (1,3π)。则由极坐标中复数相乘的性质可以得到 g n g_n gn写成极坐标的形式就是 ( 1 , π 3 × 2 1 − n ) (1,\frac{\pi}{3}×2^{1-n}) (1,3π×21n),也就是 ( 1 , π 3 × 2 n − 1 ) (1,\frac{\pi}{3×2^{n-1}}) (1,3×2n1π)。也就是 g n = c o s π 3 × 2 n − 1 + i s i n π 3 × 2 n − 1 g_n=cos\frac{\pi}{3×2^{n-1}}+isin\frac{\pi}{3×2^{n-1}} gn=cos3×2n1π+isin3×2n1π。接下来就一步步倒推回去就可以了。

当然,每次都写那么复杂的式子那真是太恶心了,不如先设 θ = π 3 × 2 n − 1 \theta=\frac{\pi}{3×2^{n-1}} θ=3×2n1π使式子美观一点。

g n = T n + 3 i T n − 3 i ⇒ T n = 2 3 i g n − 1 + 3 i = 3 i ( 2 c o s θ − 1 + i s i n θ + 1 ) = 3 i ( 2 ( c o s θ − 1 − i s i n θ ) ( c o s θ − 1 + i s i n θ ) ( c o s θ − 1 − i s i n θ ) + 1 ) = 3 i ( c o s θ − i s i n θ − 1 1 − c o s θ + 1 ) = 3 s i n θ 1 − c o s θ g_n=\frac{T_{n}+\sqrt{3}i}{T_{n}-\sqrt{3}i}\Rightarrow T_n=\frac{2\sqrt{3}i}{g_n-1}+\sqrt{3}i=\sqrt{3}i(\frac{2}{cos\theta-1+isin\theta}+1)=\sqrt{3}i(\frac{2(cos\theta-1-isin\theta)}{(cos\theta-1+isin\theta)(cos\theta-1-isin\theta)}+1)=\sqrt{3}i(\frac{cos\theta-isin\theta-1}{1-cos\theta}+1)=\frac{\sqrt{3}sin\theta}{1-cos\theta} gn=Tn3 iTn+3 iTn=gn123 i+3 i=3 i(cosθ1+isinθ2+1)=3 i((cosθ1+isinθ)(cosθ1isinθ)2(cosθ1isinθ)+1)=3 i(1cosθcosθisinθ1+1)=1cosθ3 sinθ

看到这个结构,你应该要很快意识到它可以转化为 c o t cot cot 3 s i n θ 1 − c o s θ = 2 3 s i n θ 2 c o s θ 2 2 s i n θ 2 2 = 3 c o t θ 2 \frac{\sqrt{3}sin\theta}{1-cos\theta}=\frac{2\sqrt{3}sin_{\frac{\theta}{2}} cos_{\frac{\theta}{2}}}{2sin^2_{\frac{\theta}{2}}}=\sqrt{3}cot_{\frac{\theta}{2}} 1cosθ3 sinθ=2sin2θ223 sin2θcos2θ=3 cot2θ。再把 θ = π 3 × 2 n − 1 \theta=\frac{\pi}{3×2^{n-1}} θ=3×2n1π代回去得到 T n = 3 c o t π 3 × 2 n T_n=\sqrt{3}cot\frac{\pi}{3×2^n} Tn=3 cot3×2nπ。回头看 S n = T n − 1 2 S_n=\frac{T_n-1}{2} Sn=2Tn1。则 a n = S n − S n − 1 = 3 2 ( c o t π 3 × 2 n − c o t π 3 × 2 n − 1 ) a_n=S_n-S_{n-1}=\frac{\sqrt{3}}{2}(cot\frac{\pi}{3×2^n}-cot\frac{\pi}{3×2^{n-1}}) an=SnSn1=23 (cot3×2nπcot3×2n1π)。撒花!完结!

聪明的 t x l txl txl正在热烈庆祝的时候,却发现愚蠢的 H P HP HP已经晕倒在地。他赶紧为他做了人工呼吸,并且责备自己没能让愚蠢的 H P HP HP理解自己到底在干什么。

欲知后事如何,请听下回因式分解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值