菜鸡HP的被虐日常(15)各种奇怪的不等式②

B y H o l y P u s h By\quad HolyPush ByHolyPush

聪明的 t x l :    txl:\; txl:所谓极值点偏移问题,常常长得像这样:

已知一个单峰函数 f ( x ) f(x) f(x),其中对于 x 1 , x 2 x_1,x_2 x1,x2两点, f ( x 1 ) , f ( x 2 ) f(x_1),f(x_2) f(x1),f(x2)有某种关系,然后让你求证 x 1 + x 2 x_1+x_2 x1+x2或者 x 1 x 2 x_1x_2 x1x2等式子大于或小于某一个数。
举个最简单的例子吧。

已知 f ( x ) = x e − x , f(x)=xe^{-x}, f(x)=xex,正实数 x 1 , x 2 , x 1 < x 2 x_1,x_2,x_1<x_2 x1,x2,x1<x2满足 f ( x 1 ) = f ( x 2 ) f(x_1)=f(x_2) f(x1)=f(x2),求证 x 1 + x 2 > 2 x_1+x_2>2 x1+x2>2

愚蠢的 H P : HP: HP:这么奇怪的函数,当然是先求导看性质惹。
f ′ ( x ) = e − x − x e − x = ( 1 − x ) e − x f'(x)=e^{-x}-xe^{-x}=(1-x)e^{-x} f(x)=exxex=(1x)ex。容易发现, x > 1 x>1 x>1时, f ′ ( x ) < 0 f'(x)<0 f(x)<0,函数单调递减, x < 1 x<1 x<1时, f ′ ( x ) > 0 f'(x)>0 f(x)>0,函数单调递增。故这个函数是个单峰函数, x = 1 x=1 x=1时取到最高点 1 e \frac{1}{e} e1

然后愚蠢的 H P HP HP就无从下手了。

聪明的 t x l : txl: txl:处理这种问题一般有几种常见套路。
我们先画个图吧。
在这里插入图片描述
我们从题目要证什么入手。如果要证 x 1 + x 2 > 2 x_1+x_2>2 x1+x2>2,相当于证 x 1 > 2 − x 2 x_1>2-x_2 x1>2x2。因为有 x 1 < x 2 , x_1<x_2, x1<x2,所以两个点分别分布在 x = 1 x=1 x=1的两侧才可能使 f ( x 1 ) = f ( x 2 ) f(x_1)=f(x_2) f(x1)=f(x2)。也就是说, 0 < x 1 < 1 0<x_1<1 0<x1<1 x 2 > 1 x_2>1 x2>1。所以 x 1 , 2 − x 2 x_1,2-x_2 x1,2x2就在直线 x = 1 x=1 x=1的同侧了。我们知道同侧是有单调性的,所以只要证明 f ( x 1 ) > f ( 2 − x 2 ) f(x_1)>f(2-x_2) f(x1)>f(2x2)就可以了。而我们又知道 f ( x 1 ) = f ( x 2 ) f(x_1)=f(x_2) f(x1)=f(x2),所以也相当于证明 f ( x 2 ) > f ( 2 − x 2 ) f(x_2)>f(2-x_2) f(x2)>f(2x2) x 2 > 1 x_2>1 x2>1时恒成立。

愚蠢的 H P :    HP:\; HP:构造函数    ! \;! !
聪明的 t x l : txl: txl:没错。

我们构造函数 g ( x ) = f ( x ) − f ( 2 − x ) 。 g(x)=f(x)-f(2-x)。 g(x)=f(x)f(2x)接下来我们只要证明 g ( x ) g(x) g(x) x > 1 x>1 x>1时恒 > 0 >0 >0即可,也就是我们要求 g ( x ) g(x) g(x)的最小值。

g ′ ( x ) = f ′ ( x ) + f ′ ( 2 − x ) = ( 1 − x ) ( e − x − e x − 2 ) g'(x)=f'(x)+f'(2-x)=(1-x)(e^{-x}-e^{x-2}) g(x)=f(x)+f(2x)=(1x)(exex2)。显然,在 x > 1 x>1 x>1的时候, g ′ ( x ) > 0 g'(x)>0 g(x)>0,所以 g ( x ) g(x) g(x) ( 1 , + ∞ ) (1,+∞) (1,+)上单调递增。也就是说, g ( x ) > g ( 1 ) = 0 g(x)>g(1)=0 g(x)>g(1)=0 g ( x ) g(x) g(x)恒正    ! \;! !于是就证完了。

第二种方法,既然你想不到构造函数,那就暴力把所有已知条件都写一遍呗!
x 1 e − x 1 = x 2 e − x 2 x_1e^{-x_1}=x_2e^{-x_2} x1ex1=x2ex2,除过来就是 x 1 x 2 = e x 1 − x 2 \frac{x_1}{x_2}=e^{x_1-x_2} x2x1=ex1x2,看到这个结构手痒痒,两边同时取对数得 l n x 1 − l n x 2 = x 1 − x 2 lnx_1-lnx_2=x_1-x_2 lnx1lnx2=x1x2,即 x 1 − x 2 l n x 1 − l n x 2 = 1 \frac{x_1-x_2}{lnx_1-lnx_2}=1 lnx1lnx2x1x2=1。但这个式子有什么用呢?

我们应该欢迎平均数大家庭中迎来一名新的成员:对数平均数。于是现在平均数大家庭里已经有五名成员了。

所谓对数平均数,就是 a − b l n a − l n b , a ≠ b , a , b > 0 \frac{a-b}{lna-lnb},a≠b,a,b>0 lnalnbaba=ba,b>0。它在均值不等式中排位在几何平均数和算术平均数之间,也就是 a b < a − b l n a − l n b < a + b 2 \sqrt{ab}<\frac{a-b}{lna-lnb}<\frac{a+b}{2} ab <lnalnbab<2a+b,注意没有等号哦。

于是我们可以愉快地利用上述结论。 x 1 + x 2 2 > x 1 − x 2 l n x 1 − l n x 2 = 1 \frac{x_1+x_2}{2}>\frac{x_1-x_2}{lnx_1-lnx_2}=1 2x1+x2>lnx1lnx2x1x2=1,即 x 1 + x 2 > 2 x_1+x_2>2 x1+x2>2

结论用着简单,但如何证明却十分麻烦。我们还是要用到导数这一有用的工具。(由于 a , b a,b a,b对称,所以以下过程都设 a > b a>b a>b

先证左边吧。
要证 a b < a − b l n a − l n b \sqrt{ab}<\frac{a-b}{lna-lnb} ab <lnalnbab
两边同时除以 a b \sqrt{ab} ab ,即证 a b − b a l n a b > 1 \frac{\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}}{ln\frac{a}{b}}>1 lnbaba ab >1,令 t = a b , t > 1 t=\sqrt{\frac{a}{b}},t>1 t=ba ,t>1,则原式即证 t − 1 t − 2 l n t > 0 t-\frac{1}{t}-2lnt>0 tt12lnt>0
h ( t ) = t − 1 t − 2 l n t h(t)=t-\frac{1}{t}-2lnt h(t)=tt12lnt,则 h ′ ( t ) = 1 + 1 t 2 − 2 t = ( 1 − 1 t ) 2 > 0 h'(t)=1+\frac{1}{t^2}-\frac{2}{t}=(1-\frac{1}{t})^2>0 h(t)=1+t21t2=(1t1)2>0。也就是说, h ( t ) h(t) h(t) t > 1 t>1 t>1时单调递增。所以 h ( t ) > h ( 1 ) = 0 h(t)>h(1)=0 h(t)>h(1)=0。所以 h ( t ) h(t) h(t) t > 1 t>1 t>1时恒 > 0 >0 >0,则原式成立。

聪明的 t x l : txl: txl本来不想证右边的,但是为了扩大篇幅,还是证一证吧,反正套路是相似的。

要证 a − b l n a − l n b < a + b 2 \frac{a-b}{lna-lnb}<\frac{a+b}{2} lnalnbab<2a+b,把 a + b a+b a+b除到左边去, l n a − l n b lna-lnb lnalnb乘到右边去。要证的式子便成了
a b − 1 a b + 1 < l n a b 2 \frac{\frac{a}{b}-1}{\frac{a}{b}+1}<\frac{ln\frac{a}{b}}{2} ba+1ba1<2lnba。令 t = a b t=\frac{a}{b} t=ba,则原式便成了 1 − 2 t + 1 < l n t 2 1-\frac{2}{t+1}<\frac{lnt}{2} 1t+12<2lnt
我们令 h ( t ) = 2 t + 1 + l n t 2 − 1 h(t)=\frac{2}{t+1}+\frac{lnt}{2}-1 h(t)=t+12+2lnt1,则 h ′ ( t ) = − 2 ( t + 1 ) 2 + 1 2 t = ( t − 1 ) 2 2 t ( t + 1 ) 2 h'(t)=-\frac{2}{(t+1)^2}+\frac{1}{2t}=\frac{(t-1)^2}{2t(t+1)^2} h(t)=(t+1)22+2t1=2t(t+1)2(t1)2,在 t > 1 t>1 t>1时恒为正,也就是 h ( t ) h(t) h(t) t > 1 t>1 t>1时单调递增,所以 h ( t ) > h ( 1 ) = 0 h(t)>h(1)=0 h(t)>h(1)=0,即 h ( t ) h(t) h(t) t > 1 t>1 t>1时恒为正,则原式得证。

聪明的 t x l :    txl:\; txl:在极值点偏移问题中,上述的两种构造对称函数和对数不等式的方法是比较常用的,也是比较套路的。
愚蠢的 H P :    HP:\; HP:嗯,不等式现在看起来还容易接受。
聪明的 t x l : txl: txl:以后有你好受的。

欲知后事如何,请听下回因式分解。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值