小土堆Pytorch学习笔记(三、加载数据)

文章介绍了如何在PyTorch中创建自定义数据集,包括从`torch.utils.data.Dataset`抽象类派生并重写`__getitem__`和`__len__`方法。示例代码展示了一个名为`MyData`的数据集类,用于加载图片及其标签,适用于图像识别任务。
摘要由CSDN通过智能技术生成

一、dataset和dataloader

在这里插入图片描述

二、查看dataset

from torch.utils.data import Dataset
help(Dataset)
在这里插入图片描述
所有的dataset都应该继承它。所有的子类都应该重写__getitem__方法,子类也可以选择性地重写:__len__方法。
class Dataset(typing.Generic)
| An abstract class representing a :class:Dataset.
|
| All datasets that represent a map from keys to data samples should subclass
| it. All subclasses should overwrite :meth:__getitem__, supporting fetching a
| data sample for a given key. Subclasses could also optionally overwrite
| :meth:__len__, which is expected to return the size of the dataset by many
| :class:~torch.utils.data.Sampler implementations and the default options
| of :class:~torch.utils.data.DataLoader.
|
| … note::
| :class:~torch.utils.data.DataLoader by default constructs a index
| sampler that yields integral indices. To make it work with a map-style
| dataset with non-integral indices/keys, a custom sampler must be provided.

三、dataset的制作代码

from torch.utils.data import Dataset
from PIL import Image
import os


class MyData(Dataset):
    def __init__(self, root_dir, label_dir):
        # self.xxx方法相当于让xxx成为了这个类的全局变量
        self.root_dir = root_dir
        self.label_dir = label_dir
        self.path = os.path.join(root_dir, label_dir)
        # 获取self.path下所有图片的地址,成一个列表,赋给self.img_path
        self.img_path = os.listdir(self.path)

        pass

    # 获取图片地址(img_path)中的每一个图片
    def __getitem__(self, idx):
        # 通过每张图片地址的数字索引将图片的地址赋给img_name
        img_name = self.img_path[idx]
        # 将当前文件夹下的图片的相对地址赋给img_item_path
        img_item_path = os.path.join(self.root_dir, self.label_dir, img_name)
        # 使用Image模块打开图片
        img = Image.open(img_item_path)
        label = self.label_dir
        return img, label
        pass

    def __len__(self):
        return len(self.img_path)


# 创建一个ants的实例
root_dir = "hymenoptera_dataset/train"
ants_label_dir = "ants"
ants_dataset = MyData(root_dir, ants_label_dir)
# 创建一个bees的实例
bees_label_dir = "bees"
bees_dataset = MyData(root_dir, bees_label_dir)


在控制台进行了演示,查看变量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值