EFK教程 - EFK快速入门指南

通过部署elasticsearch(三节点)+filebeat+kibana快速入门EFK,并搭建起可用的demo环境测试效果

作者:“发颠的小狼”,欢迎转载与投稿


目录

▪ 用途
▪ 实验架构
▪ EFK软件安装
▪ elasticsearch配置
▪ filebeat配置
▪ kibana配置
▪ 启动服务
▪ kibana界面配置
▪ 测试
▪ 后续文章


用途

▷ 通过filebeat实时收集 nginx访问日志、传输至elasticsearch集群 ▷ filebeat将收集的日志传输至elasticsearch集群 ▷ 通过kibana展示日志

实验架构

▷ 服务器配置

▷ 架构图


EFK软件安装

版本说明

▷ elasticsearch 7.3.2
▷ filebeat 7.3.2
▷ kibana 7.3.2

注意事项

▷ 三个组件版本必须一致
▷ elasticsearch必须3台以上且总数量为单数

安装路径

▷ /opt/elasticsearch
▷ /opt/filebeat
▷ /opt/kibana

elasticsearch安装:3台es均执行相同的安装步骤

mkdir -p /opt/software && cd /opt/software
wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-7.3.2-linux-x86_64.tar.gz
tar -zxvf elasticsearch-7.3.2-linux-x86_64.tar.gz
mv elasticsearch-7.3.2 /opt/elasticsearch
useradd elasticsearch -d /opt/elasticsearch -s /sbin/nologin
mkdir -p /opt/logs/elasticsearch
chown elasticsearch.elasticsearch /opt/elasticsearch -R
chown elasticsearch.elasticsearch /opt/logs/elasticsearch -R

# 限制一个进程可以拥有的VMA(虚拟内存区域)的数量要超过262144,不然elasticsearch会报max virtual memory areas vm.max_map_count [65535] is too low, increase to at least [262144]
echo "vm.max_map_count = 655350" >> /etc/sysctl.conf
sysctl -p

filebeat安装

mkdir -p /opt/software && cd /opt/software
wget https://artifacts.elastic.co/downloads/beats/filebeat/filebeat-7.3.2-linux-x86_64.tar.gz
mkdir -p /opt/logs/filebeat/
tar -zxvf filebeat-7.3.2-linux-x86_64.tar.gz
mv filebeat-7.3.2-linux-x86_64 /opt/filebeat

kibana安装

mkdir -p /opt/software && cd /opt/software
wget https://artifacts.elastic.co/downloads/kibana/kibana-7.3.2-linux-x86_64.tar.gz
tar -zxvf kibana-7.3.2-linux-x86_64.tar.gz
mv kibana-7.3.2-linux-x86_64 /opt/kibana
useradd kibana -d /opt/kibana -s /sbin/nologin
chown kibana.kibana /opt/kibana -R

nginx安装(用于生成日志,被filebeat收集)

# 只在192.168.1.11安装
yum install -y nginx
/usr/sbin/nginx -c /etc/nginx/nginx.conf

elasticsearch配置

▷ 192.168.1.31 /opt/elasticsearch/config/elasticsearch.yml

# 集群名字
cluster.name: my-application

# 节点名字
node.name: 192.168.1.31

# 日志位置
path.logs: /opt/logs/elasticsearch

# 本节点访问IP
network.host: 192.168.1.31

# 本节点访问
http.port: 9200

# 节点运输端口
transport.port: 9300

# 集群中其他主机的列表
discovery.seed_hosts: ["192.168.1.31", "192.168.1.32", "192.168.1.33"]

# 首次启动全新的Elasticsearch集群时,在第一次选举中便对其票数进行计数的master节点的集合
cluster.initial_master_nodes: ["192.168.1.31", "192.168.1.32", "192.168.1.33"]

# 启用跨域资源共享
http.cors.enabled: true
http.cors.allow-origin: "*"

# 只要有2台数据或主节点已加入集群,就可以恢复
gateway.recover_after_nodes: 2

▷ 192.168.1.32 /opt/elasticsearch/config/elasticsearch.yml

# 集群名字
cluster.name: my-application

# 节点名字
node.name: 192.168.1.32

# 日志位置
path.logs: /opt/logs/elasticsearch

# 本节点访问IP
network.host: 192.168.1.32

# 本节点访问
http.port: 9200

# 节点运输端口
transport.port: 9300

# 集群中其他主机的列表
discovery.seed_hosts: ["192.168.1.31", "192.168.1.32", "192.168.1.33"]

# 首次启动全新的Elasticsearch集群时,在第一次选举中便对其票数进行计数的master节点的集合
cluster.initial_master_nodes: ["192.168.1.31", "192.168.1.32", "192.168.1.33"]

# 启用跨域资源共享
http.cors.enabled: true
http.cors.allow-origin: "*"

# 只要有2台数据或主节点已加入集群,就可以恢复
gateway.recover_after_nodes: 2

▷ 192.168.1.33 /opt/elasticsearch/config/elasticsearch.yml

# 集群名字
cluster.name: my-application

# 节点名字
node.name: 192.168.1.33

# 日志位置
path.logs: /opt/logs/elasticsearch

# 本节点访问IP
network.host: 192.168.1.33

# 本节点访问
http.port: 9200

# 节点运输端口
transport.port: 9300

# 集群中其他主机的列表
discovery.seed_hosts: ["192.168.1.31", "192.168.1.32", "192.168.1.33"]

# 首次启动全新的Elasticsearch集群时,在第一次选举中便对其票数进行计数的master节点的集合
cluster.initial_master_nodes: ["192.168.1.31", "192.168.1.32", "192.168.1.33"]

# 启用跨域资源共享
http.cors.enabled: true
http.cors.allow-origin: "*"

# 只要有2台数据或主节点已加入集群,就可以恢复
gateway.recover_after_nodes: 2

filebeat配置

192.168.1.11 /opt/filebeat/filebeat.yml

# 文件输入
filebeat.inputs:
  # 文件输入类型
  - type: log
    # 开启加载
    enabled: true
    # 文件位置
    paths:
      - /var/log/nginx/access.log
    # 自定义参数
    fields:
      type: nginx_access  # 类型是nginx_access,和上面fields.type是一致的

# 输出至elasticsearch
output.elasticsearch:
  # elasticsearch集群
  hosts: ["http://192.168.1.31:9200",
          "http://192.168.1.32:9200",
          "http://192.168.1.33:9200"]

  # 索引配置
  indices:
    # 索引名
    - index: "nginx_access_%{+yyy.MM}"
      # 当类型是nginx_access时使用此索引
      when.equals:
        fields.type: "nginx_access"

# 关闭自带模板
setup.template.enabled: false

# 开启日志记录
logging.to_files: true
# 日志等级
logging.level: info
# 日志文件
logging.files:
  # 日志位置
  path: /opt/logs/filebeat/
  # 日志名字
  name: filebeat
  # 日志轮转期限,必须要2~1024
  keepfiles: 7
  # 日志轮转权限
  permissions: 0600

kibana配置

192.168.1.21 /opt/kibana/config/kibana.yml

# 本节点访问端口
server.port: 5601

# 本节点IP
server.host: "192.168.1.21"

# 本节点名字
server.name: "192.168.1.21"

# elasticsearch集群IP
elasticsearch.hosts: ["http://192.168.1.31:9200",
                      "http://192.168.1.32:9200",
                      "http://192.168.1.33:9200"]

启动服务

# elasticsearch启动(3台es均启动)
sudo -u elasticsearch /opt/elasticsearch/bin/elasticsearch

# filebeat启动
/opt/filebeat/filebeat -e -c /opt/filebeat/filebeat.yml -d "publish"

# kibana启动
sudo -u kibana /opt/kibana/bin/kibana -c /opt/kibana/config/kibana.yml

上面的启动方法是位于前台运行。systemd配置方法,会在《EFK教程》系列后续文章中提供,敬请关注!


kibana界面配置

1️⃣ 使用浏览器访问192.168.1.21:5601,看到以下界面表示启动成功

2️⃣ 点"Try our sample data"

3️⃣ "Help us improve the Elastic Stack by providing usage statistics for basic features. We will not share this data outside of Elastic"点"no”

4️⃣ "Add Data to kibana"点"Add data"

5️⃣ 进入视图


测试

访问nginx,生成日志

curl -I "http://192.168.1.11"

在kibana上查看数据

1️⃣ 创建索引模板

2️⃣ 输入你要创建的索引模板的名字

3️⃣ 查看之前CURL的数据


后续文章

本文是《EFK教程》系列文章的第一篇,后续EFK文章将逐步发布,包含角色分离、性能优化等许多干货,敬请关注!

微服务是什么?微服务是用于构建应用程序的架构风格,一个大的系统可由一个或者多个微服务组成,微服务架构可将应用拆分成多个核心功能,每个功能都被称为一项服务,可以单独构建和部署,这意味着各项服务在工作和出现故障的时候不会相互影响。为什么要用微服务?单体架构下的所有代码模块都耦合在一起,代码量大,维护困难,想要更新一个模块的代码,也可能会影响其他模块,不能很好的定制化代码。微服务中可以有java编写、有Python编写的,他们都是靠restful架构风格统一成一个系统的,所以微服务本身与具体技术无关、扩展性强。大型电商平台微服务功能图为什么要将SpringCloud项目部署到k8s平台?SpringCloud只能用在SpringBoot的java环境中,而kubernetes可以适用于任何开发语言,只要能被放进docker的应用,都可以在kubernetes上运行,而且更轻量,更简单。SpringCloud很多功能都跟kubernetes重合,比如服务发现,负载均衡,配置管理,所以如果把SpringCloud部署到k8s,那么很多功能可以直接使用k8s原生的,减少复杂度。Kubernetes作为成熟的容器编排工具,在国内外很多公司、世界500强等企业已经落地使用,很多中小型公司也开始把业务迁移到kubernetes中。kubernetes已经成为互联网行业急需的人才,很多企业都开始引进kubernetes技术人员,实现其内部的自动化容器云平台的建设。对于开发、测试、运维、架构师等技术人员来说k8s已经成为的一项重要的技能,下面列举了国内外在生产环境使用kubernetes的公司: 国内在用k8s的公司:阿里巴巴、百度、腾讯、京东、360、新浪、头条、知乎、华为、小米、富士康、移动、银行、电网、阿里云、青云、时速云、腾讯、优酷、抖音、快手、美团等国外在用k8s的公司:谷歌、IBM、丰田、iphone、微软、redhat等整个K8S体系涉及到的技术众多,包括存储、网络、安全、监控、日志、DevOps、微服务等,很多刚接触K8S的初学者,都会感到无从下手,为了能让大家系统地学习,克服这些技术难点,推出了这套K8S架构师课程。Kubernetes的发展前景 kubernetes作为炙手可热的技术,已经成为云计算领域获取高薪要掌握的重要技能,在招聘网站搜索k8s,薪资水平也非常可观,为了让大家能够了解k8s目前的薪资分布情况,下面列举一些K8S的招聘截图: 讲师介绍:  先超容器云架构师、IT技术架构师、DevOps工程师,曾就职于世界500强上市公司,拥有多年一线运维经验,主导过上亿流量的pv项目的架构设计和运维工作;具有丰富的在线教育经验,对课程一直在改进和提高、不断的更新和完善、开发更多的企业实战项目。所教学员遍布京东、阿里、百度、电网等大型企业和上市公司。课程学习计划 学习方式:视频录播+视频回放+全套源码笔记 教学服务:模拟面试、就业指导、岗位内推、一对一答疑、远程指导 VIP终身服务:一次购买,终身学习课程亮点:1. 学习方式灵活,不占用工作时间:可在电脑、手机观看,随时可以学习,不占用上班时间2.老师答疑及时:老师24小时在线答疑3. 知识点覆盖全、课程质量高4. 精益求精、不断改进根据学员要求、随时更新课程内容5. 适合范围广,不管你是0基础,还是拥有工作经验均可学习:0基础1-3年工作经验3-5年工作经验5年以上工作经验运维、开发、测试、产品、前端、架构师其他行业转行做技术人员均可学习课程部分项目截图   课程大纲 k8s+SpringCloud全栈技术:基于世界500强的企业实战课程-大纲第一章 开班仪式老师自我介绍、课程大纲介绍、行业背景、发展趋势、市场行情、课程优势、薪资水平、给大家的职业规划、课程学习计划、岗位内推第二章 kubernetes介绍Kubernetes简介kubernetes起源和发展kubernetes优点kubernetes功能kubernetes应用领域:在大数据、5G、区块链、DevOps、AI等领域的应用第三章  kubernetes中的资源对象最小调度单元Pod标签Label和标签选择器控制器Replicaset、Deployment、Statefulset、Daemonset等四层负载均衡器Service第四章 kubernetes架构和组件熟悉谷歌的Borg架构kubernetes单master节点架构kubernetes多master节点高可用架构kubernetes多层架构设计原理kubernetes API介绍master(控制)节点组件:apiserver、scheduler、controller-manager、etcdnode(工作)节点组件:kube-proxy、coredns、calico附加组件:prometheus、dashboard、metrics-server、efk、HPA、VPA、Descheduler、Flannel、cAdvisor、Ingress     Controller。第五章 部署多master节点的K8S高可用集群(kubeadm)第六章 带你体验kubernetes可视化界面dashboard在kubernetes中部署dashboard通过token令牌登陆dashboard通过kubeconfig登陆dashboard限制dashboard的用户权限在dashboard界面部署Web服务在dashboard界面部署redis服务第七章 资源清单YAML文件编写技巧编写YAML文件常用字段,YAML文件编写技巧,kubectl explain查看帮助命令,手把手教你创建一个Pod的YAML文件第八章 通过资源清单YAML文件部署tomcat站点编写tomcat的资源清单YAML文件、创建service发布应用、通过HTTP、HTTPS访问tomcat第九章  kubernetes Ingress发布服务Ingress和Ingress Controller概述Ingress和Servcie关系安装Nginx Ingress Controller安装Traefik Ingress Controller使用Ingress发布k8s服务Ingress代理HTTP/HTTPS服务Ingress实现应用的灰度发布-可按百分比、按流量分发第十章 私有镜像仓库Harbor安装和配置Harbor简介安装HarborHarbor UI界面使用上传镜像到Harbor仓库从Harbor仓库下载镜像第十一章 微服务概述什么是微服务?为什么要用微服务?微服务的特性什么样的项目适合微服务?使用微服务需要考虑的问题常见的微服务框架常见的微服务框架对比分析第十二章 SpringCloud概述SpringCloud是什么?SpringCloud和SpringBoot什么关系?SpringCloud微服务框架的优缺点SpringCloud项目部署到k8s的流程第十三章 SpringCloud组件介绍服务注册与发现组件Eureka客户端负载均衡组件Ribbon服务网关Zuul熔断器HystrixAPI网关SpringCloud Gateway配置中心SpringCloud Config第十四章 将SpringCloud项目部署到k8s平台的注意事项如何进行服务发现?如何进行配置管理?如何进行负载均衡?如何对外发布服务?k8s部署SpringCloud项目的整体流程第十五章 部署MySQL数据库MySQL简介MySQL特点安装部署MySQL在MySQL数据库导入数据对MySQL数据库授权第十六章 将SpringCLoud项目部署到k8s平台SpringCloud的微服务电商框架安装openjdk和maven修改源代码、更改数据库连接地址通过Maven编译、构建、打包源代码在k8s中部署Eureka组件在k8s中部署Gateway组件在k8s中部署前端服务在k8s中部署订单服务在k8s中部署产品服务在k8s中部署库存服务第十七章 微服务的扩容和缩容第十八章 微服务的全链路监控什么是全链路监控?为什么要进行全链路监控?全链路监控能解决哪些问题?常见的全链路监控工具:zipkin、skywalking、pinpoint全链路监控工具对比分析第十九章 部署pinpoint服务部署pinpoint部署pinpoint agent在k8s中重新部署带pinpoint agent的产品服务在k8s中重新部署带pinpoint agent的订单服务在k8s中重新部署带pinpoint agent的库存服务在k8s中重新部署带pinpoint agent的前端服务在k8s中重新部署带pinpoint agent的网关和eureka服务Pinpoint UI界面使用第二十章 基于Jenkins+k8s+harbor等构建企业级DevOps平台第二十一章 基于Promethues+Alert+Grafana搭建企业级监控系统第二十二章 部署智能化日志收集系统EFK 
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值