[数据可视化] 漏斗图(Funnel Chart)

漏斗图是一种用于展示业务流程转化的图表,适用于多环节单向流程分析。它通过梯形面积展示各环节业务量差异,帮助识别流程中可能存在的问题。在案例中,展示了电子商务网站订单转化及客户洽谈签约的漏斗图制作过程,强调了漏斗图不适合无逻辑顺序的分类对比和占比表示,推荐使用柱状图和饼图。制作时要注意数据量不宜过大,标签和颜色设置需清晰易懂。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

漏斗图介绍

漏斗图适用于业务流程比较规范、周期长、环节多单流程单向分析,通过漏斗图对各环节业务数据进行比较,能够直观地分析各业务环节中哪些出现了问题,进而做出决策 

漏斗图用梯形面积表示某个环节业务量与上一个环节之间的差异

漏斗图从上到下,有逻辑上的顺序关系,可体现出随着业务流程的推进,继而呈现业务目标完成的情况

漏斗图总是开始于一个100%的数量,结束于一个较小的数量。在开始和结束之间由N个流程环节组成。每个环节用一个梯形来表示,梯形的上底宽度表示当前环节的输入情况,梯形的下底宽度表示当前环节的输出情况,上底与下底之间的差值形象的表现了在当前环节业务量的减少量,当前梯形边的斜率表示了当前环节的减少率。 通过给不同的环节标以不同的颜色,可以帮助用户更好的区分各个环节之间的差异

漏斗图本质上是一个倒三角形的条形图

漏斗图的所有环节的流量都应该使用同一个度量

漏斗图的构成

适合的数据:列表(包含两个字段,一个分类字段、另一个是连续数据字段),其中分类字段映射到颜色,连续数据字段映射到映射到梯形的面积

适合的数据条数:不超过12条数据(数据量太大的数据不适合用漏斗图)

漏斗图应用场景案例 

案例1:某电子商务网站一周内某一商品订单转化过程数据,将其转化成漏斗图进行呈现

我们使用Excel2019版本制作漏斗图如下所示

漏斗图适用于流程流量分析,分析流量的转化情况 

案例2:使用Power BI制作反映客户从洽谈到签约全过程的漏斗图

数据源

具体操作步骤如下所示

步骤1:单击"可视化"窗格中的"漏斗图"图标,选中相应字段

步骤2:在格式栏中,将类别标签设为"开",数据颜色设为"蓝色",数据标签设为"开",标签样式设为"第一个百分比",显示单位设为"无"

呈现效果如下所示

步骤3:对标题文本、字体、背景色、对齐方式、文本大小进行设置,最终呈现结果如下所示

可以看出客户签约转化率较高(43.8%)

注意

1.漏斗图不适合表示无逻辑顺序的分类对比数据,如果要表示无逻辑顺序的分类对比情况,建议使用柱状图

2.漏斗图不适合表示占比情况,如果要表示占比情况,请使用饼图

<think>嗯,用户之前让我介绍了如何用Python的seaborn和matplotlib绘制蜂群,现在他们又问了漏斗的绘制方法。我需要先回忆漏斗通常的应用场景,比如展示转化率或者流程中的各个阶段。用户可能在做某种数据分析项目,比如市场营销的转化分析,或者是用户行为研究。 用户之前给出的数据是关于特征重要性的,但这次他们可能的数据结构可能不同,因为漏斗通常需要阶段性的数据。我需要确定用户的数据结构,比如是否有阶段名称和对应的数值。不过用户这次并没有给出具体数据,所以可能需要提供一个通用的例子。 接下来,我需要考虑在Python中常用的库,比如plotly,因为它内置了漏斗的支持,或者matplotlib,虽然需要手动构建。之前用户用了seaborn和matplotlib,但漏斗在plotly中更简单,所以可能推荐使用plotly。不过,考虑到用户可能的环境限制,是否需要两种方法都提供? 另外,用户可能对代码的详细步骤和解释有需求,所以需要分步骤说明,包括数据准备、排序、绘、美化表等。还要注意代码的注释,确保用户能理解每一步的作用。 还要注意用户之前的问题中提到的系统级指令,比如数学表达式用$...$,独立公式用$$...$$,但这里可能不需要数学公式,但需要确保代码格式正确,用中文回答,结构清晰。 可能需要比较漏斗和其他表(如条形)的适用场景,帮助用户理解何时使用漏斗更合适。比如,当展示流程中的逐步转化时,漏斗更直观。 最后,检查是否有常见的错误需要注意,比如数据必须按递减顺序排列,否则漏斗形状不正确。或者颜色搭配、标签清晰度等可视化最佳实践。</think>以下是使用Python绘制漏斗的完整实现方案和专业技术解析,基于`plotly`和`matplotlib`双版本实现: --- ### **一、漏斗核心特性** $$ \text{阶段转化率} = \frac{\text{当前阶段用户量}}{\text{前一阶段用户量}} \times 100\% $$ 漏斗适用于展示**流程阶段性递减**数据,常见于: - 市场营销转化分析 - 用户行为路径跟踪 - 销售流程损耗监控 --- ### **二、Plotly专业版实现** ```python import plotly.graph_objects as go # 示例数据(需按阶段顺序排列) stages = ["曝光", "点击", "加购", "下单", "付款"] values = [10000, 3500, 1200, 800, 650] # 必须降序
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值