【理解机器学习算法】之特征选择(REF)

递归特征消除(RFE)是一种特征选择方法,用于通过递归减少特征集的大小来找出模型性能最佳的特征。RFE的工作原理是反复构建模型并选择最重要的特征(基于模型权重),然后去除最不重要的特征,直到达到指定的特征数量。这个过程依赖于模型对特征重要性的评估,通常与具有coef_或feature_importances_属性的模型一起使用,如线性模型、支持向量机或决策树。

RFE的代码示例

以下是使用Python中的scikit-learn库进行RFE的示例代码:

from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_digits

# 加载数据集
data = load_digits()
X = data.data
y = data.target

# 初始化模型
model = LogisticRegression(max_iter=10000)

# 初始化RFE并选择特征数量
rfe = RFE(estimator=model, n_features_to_select=10)

# 拟合RFE
rfe.fit(X, y)

# 打印选择的特征
print('Selected features:', rfe.support_)

这个例子中,我们使用了逻辑回归模型和手写数字识别的数据集。RFE被用来选择10个最重要的特征。rfe.support_属性可以用来查看哪些特征被选中。

递归特征消除是一种有效的特征选择方法,可以提高模型的预测性能,同时减少模型的复杂度。通过精心选择特征,可以避免过拟合并改善模型在未见数据上的泛化能力。

好的,下面是一份完整的 Python 代码,用于基于传统机器学习算法估算FR-Pue站点的潜热通量特征选择并画散点图。本示例使用的机器学习算法是随机森林。 ``` import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score, mean_squared_error # 加载数据集 data = pd.read_csv("FLX_FR-Pue_FLUXNET2015_FULLSET_HH_2000-2014_2-4.csv") # 删除无关变量 data = data.drop(['TIMESTAMP_START', 'TIMESTAMP_END', 'RECORD', 'USTAR', 'H', 'NETRAD', 'TA_F', 'PA_F', 'VPD_F', 'SWC_F_MDS', 'RNET', 'GPP_NT_VUT_REF', 'NEE_VUT_REF', 'FC_F_MDS', 'SFC_F_MDS', 'TA_F_MDS', 'PA_F_MDS', 'P_F_MDS', 'WS_F_MDS', 'USTAR', 'TSTAR', 'SW_IN_F_MDS', 'SW_OUT_F_MDS', 'LW_IN_F_MDS', 'LW_OUT_F_MDS', 'SWC_F_MDS_1', 'SWC_F_MDS_2', 'USTAR', 'WD', 'WS', 'USTAR', 'ZL', 'SWC_F_MDS_3', 'SWC_F_MDS_4'], axis=1) # 提取目标变量 target = data['LE_F_MDS'] data = data.drop(['LE_F_MDS'], axis=1) # 特征选择 rf = RandomForestRegressor(random_state=42) rf.fit(data, target) importances = rf.feature_importances_ indices = np.argsort(importances)[::-1] features = data.columns[indices][:4] print("Selected features:", features) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(data[features], target, test_size=0.2, random_state=42) # 随机森林模型训练 rf = RandomForestRegressor(random_state=42) rf.fit(X_train, y_train) # 模型预测 y_pred = rf.predict(X_test) # 计算模型评估指标 print("R-squared score:", r2_score(y_test, y_pred)) print("Mean squared error:", mean_squared_error(y_test, y_pred)) # 绘制散点图 plt.scatter(y_test, y_pred) plt.xlabel('True Values') plt.ylabel('Predictions') plt.title('FR-Pue Site LE_F_MDS Prediction') plt.show() ``` 这份代码会输出特征选择结果、模型评估指标以及散点图。您可以根据实际情况对代码进行修改。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

「已注销」

您的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值