DOTA 数据集:2806 张遥感图像,近 19 万个标注实例

本文介绍了DOTA数据集,一个专为遥感图像目标检测设计的大规模数据集,含有2806幅航拍图片,15个类别,用于评估和改进在复杂场景中的目标检测能力。该数据集针对航拍图像特点,如目标方向差异和比例变化,提供详尽标注,是计算机视觉研究的重要资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

By 超神经

内容提要:DOTA 数据集是用于航拍图像中的目标检测的大型图像数据集。它可用于发现和评估航拍图像中的物体。无论从数量还是质量上来说,在同类型数据集中都具有很大优势。

关键词:航拍图像 遥感数据集

 大规模遥感图像数据集,挑战 CV 难题

目标检测一直都是计算机视觉中的一个重要而富有挑战性的问题。尽管过去十年,我们已经见证了目标检测在自然场景的重大进步,但在航拍图像领域,进展却一直很缓慢。

相对于自然图像目标检测任务,例如 COCO、VOC 数据集,其中的目标几乎都是因为重力的原因,具有比较统一的方向。

但是在遥感图像目标检测中,目标是以任意方向出现并不容易完成精确的目标检测,例如车辆、飞机、舰船等。

遥感图像数据一般具有目标比例差异、

样本不平衡、目标方向/比率差异等特征

对此,武汉大学于 2017 年 11 月 28 日,于 arXiv 上发布论文《DOTA: A Large-scale Dataset for Object Detection in Aerial Images》,提出了一个新的遥感数据集图像目标检测数据集 DOTA 数据集。之后,于 2018 年 6 月在 IEEE  计算机视觉 和模式识别会议(CVPR)上发布。

论文地址:https://arxiv.org/pdf/1711.10398.pdf

作为计算机视觉的重要数据之一,遥感图像对于分析地球信息具有重要的作用。

遥感图像一般来自卫星,航拍图像可能来自大型飞机、无人机、直升机等。这些数据通常被用来进行计算机视觉分类、检测、分割、跟踪任务的训练,以及该领域特定的建筑重建、地物提取、地物属性(高度等)预测等。

 2806 幅航拍图,15 个类别详细标注

DOTA 数据集便是用于航拍图像中目标检测的图像数据集,其被用于发现和评估航拍图像中的物体。

这些图像来源包含不同传感器和平台,包括 Google Earth、JL–1 卫星拍摄,以及中国资源卫星数据和应用中心的 GF–2 卫星拍摄。

数据集共计 2806 幅航拍图,每张图像的像素尺寸在 800*800 到 4000*4000 的范围内,其中包含不同尺度、方向和形状的物体。之后这些 DOTA 图像经由专家使用 15 个常见目标类别进行注释,包括:飞机,轮船,储罐,棒球场,网球场,篮球场,地面跑道,港口,桥梁,大型车辆,小型车辆,直升机,环形交叉路口,足球场和篮球场。

完全注释的 DOTA 图像包含 188282 个实例,每个实例均由任意四边形进行标记。

数据集中用标注有定向的边界框标注实例

以下是该数据集的详细信息:

DOTA 数据集

发布机构: 武汉大学

包含数量:2806 张航拍图片

数据格式:txt.pnd

图片尺寸:800 * 800~4000*4000

数据大小:35 GB

类别数:15 类

发布时间:2017 年 11 月

下载地址:https://hyper.ai/datasets/4920

该数据已在超神经官方网站 https://hyper.ai 上线,目前该数据集位列近期热门下载资源排行前十名,搜索该数据集关键词,或点击原文,就可获取数据集。

—— 完 ——

扫描二维码,加入讨论群

获得更多优质数据集

了解人工智能落地应用

关注顶会&论文

回复「读者」了解详情

更多精彩内容(点击图片阅读)

<think>好的,用户需要寻找适用于YOLO模型的遥感图像数据集下载。首先,我要确定用户的需求是什么。他们可能正在做目标检测项目,特别是使用YOLO框架来处理遥感图像,比如卫星或航拍图片。这类数据集通常需要特定的标注格式,比如YOLO所需的txt文件,每个对象有类别和边界框信息。 接下来,我应该回忆常见的遥感数据集。DIOR数据集是一个常用的选择,它包含多种对象类别,适用于遥感目标检测。用户提到的引用[1]和[2]里提到了DIOR数据集转换为YOLO格式的方法,以及下载链接,这可能是一个关键资源。此外,还有其他数据集DOTA和UCAS-AOD,这些也是遥感领域常用的。 然后,需要考虑数据集的下载渠道。DIOR的官方来源是用户提供的escience.cn链接,但有时候官方链接可能会变动或访问困难,所以需要确认是否有其他可靠的平台提供下载,比如飞桨AI Studio,这可能对国内用户更友好。同时,DOTA和UCAS-AOD通常可以在大学或研究机构的网站上找到,比如武汉大学的RSID数据集。 另外,用户可能需要数据转换的方法,因为原始数据集可能是VOC格式或其他格式。引用[1]中提到了VOC转YOLO的博客,这可以作为参考。用户可能已经看过这些资料,但需要更明确的步骤或代码示例,比如如何配置data.yaml文件,这在YOLO训练中是必要的。 还需要考虑用户的实际操作中可能遇到的问题,比如数据集的规模是否足够,类别是否匹配他们的项目需求。例如,DIOR有20个类别,而DOTA可能有更多,用户需要根据具体目标选择合适的数据集。此外,数据预处理步骤,如图像尺寸调整、标注格式转换,都是关键点,可能需要进一步指导。 最后,生成相关问题时,要覆盖数据集选择、下载步骤、格式转换、预处理技巧以及实际应用案例,这样用户能全面了解如何获取和使用适合YOLO的遥感数据集。</think>### YOLO遥感图像数据集推荐 根据您提到的YOLO模型需求,以下推荐三个遥感图像数据集及其下载方法: 1. **DIOR数据集** - 包含23,463遥感图像190,288个标注实例,覆盖20个常见目标类别(如飞机、储油罐) - **YOLO格式转换方法**: - 参考博客《YOLO:VOC格式数据集转换为YOLO数据集格式》[^1] - 数据集下载地址: - 官方渠道:http://www.escience.cn/people/gongcheng/DIOR.html - 飞桨平台:https://aistudio.baidu.com[^2] 2. **DOTA数据集** - 大型航拍图像数据集,包含2,806图像和188,282个实例,15个类别 - 下载地址: ```markdown https://captain-whu.github.io/DOTA/dataset.html ``` - 转换脚本示例: ```python # 将DOTA旋转框转换为YOLO水平框 import math def rotate_to_horizontal(polygon): # 计算最小外接矩形逻辑 return [x_min, y_min, x_max, y_max] ``` 3. **UCAS-AOD数据集** - 专用于飞机和车辆检测,包含1,510图像 - 下载地址: ```markdown http://www.escience.cn/people/liuziyi/UCAS-AOD.html ```
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值