1. 引言
随着计算机视觉技术的不断进步,目标检测已经成为了图像分析和理解领域中的一个重要任务。目标检测旨在图像中识别和定位物体,不仅要求高精度的分类能力,还要求准确的定位能力。在航空影像分析中,目标检测的应用尤为重要,广泛应用于军事监视、城市规划、灾后重建等领域。DOTA(Dataset for Object Detection in Aerial Images)是一个专门用于航空图像目标检测的高质量数据集,包含15个类别的物体,广泛用于研究和开发与航拍图像相关的目标检测算法。
本篇博客将介绍如何使用YOLOv5模型对DOTA数据集进行目标检测,并结合PyQt5开发一个UI界面,实现用户友好的操作体验。通过该项目,您将能够实现从数据集准备、YOLOv5模型训练、推理到UI界面展示的完整流程。
2. DOTA数据集概述
DOTA数据集是一个专门用于航空图像目标检测的数据集,由中国的学者团队创建。该数据集的目的是为航空图像中的多类别目标检测提供标准化的挑战,适用于军事侦察、地理信息系统等多个领域。DOTA数据集中的目标覆盖了多个现实生活中的物体,类别包括飞机、跑道、船只、车辆、建筑物等。
-
类别数量:15个类别