关于泰勒展开

关于泰勒展开

  提醒:本人是一个高一的蒟蒻,没有系统的学习过高等数学,所以本文关于泰勒展开的推导过程会及其不严谨,大家看着就当图个乐。

泰勒展开推导 :

我们设一个函数写成多项式的形式如下:
f ( x ) = a 0 + a 1 x + a 2 x 2 + a 3 x 3 + ⋯ + a n x n f(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + \cdots + a_nx^n f(x)=a0+a1x+a2x2+a3x3++anxn

∴ f ( 0 ) = a 0 + a 1 ∗ 0 + a 2 ∗ 0 2 + a 3 ∗ 0 3 + ⋯ + a n ∗ 0 n = a 0 \therefore f(0) = a_0 + a_1*0 + a_2*0^2 + a_3*0^3 + \cdots + a_n*0^n = a_0 f(0)=a0+a10+a202+a303++an0n=a0
∴ a 0 = f ( 0 ) = f ( 0 ) ( 0 ) 0 ! \therefore a_0 = f(0) = \frac{f^{(0)}(0)}{0!} a0=f(0)=0!f(0)(0)

f ( x ) = ∑ i = 0 n a i x i f(x) = \sum_{i=0}^{n}a_ix^i f(x)=i=0naixi

我们对它求一阶导:

f ′ ( x ) = 0 + a 1 + 2 a 2 x + 3 a 3 x 2 + ⋯ + n a n x n − 1 f'(x) = 0 + a_1 + 2a_2x + 3a_3x^2 + \cdots + na_nx^{n-1} f(x)=0+a1+2a2x+3a3x2++nanxn1

∴ f ′ ( 0 ) = 0 + a 1 + 2 a 2 ∗ 0 + 3 a 3 ∗ 0 2 + ⋯ + n a n ∗ 0 n − 1 = a 1 \therefore f'(0) = 0 + a_1 + 2a_2*0 + 3a_3*0^2 + \cdots + na_n*0^{n-1} = a_1 f(0)=0+a1+2a20+3a302++nan0n1=a1
∴ a 1 = f ′ ( 0 ) = f ( 1 ) ( 0 ) 1 ! \therefore a_1 = f'(0) = \frac{f^{(1)}(0)}{1!} a1=f(0)=1!f(1)(0)

f ′ ( x ) = ∑ i = 0 n ( i × a i ) x i − 1 f'(x) = \sum_{i=0}^{n} (i \times a_i) x^{i-1} f(x)=i=0n(i×ai)xi1

我们对它求二阶导:

f ′ ′ ( x ) = 0 + 0 + 2 a 2 + 6 a 3 x + ⋯ + n ( n − 1 ) a n x n − 2 f''(x) = 0 + 0 + 2a_2 + 6a_3x + \cdots + n(n-1)a_nx^{n-2} f(x)=0+0+2a2+6a3x++n(n1)anxn2

∴ f ′ ′ ( 0 ) = 0 + 0 + 2 a 2 + 6 a 3 ∗ 0 + ⋯ + n ( n − 1 ) a n ∗ 0 n − 2 = 2 a 2 \therefore f''(0) = 0 + 0 + 2a_2 + 6a_3*0 + \cdots + n(n-1)a_n*0^{n-2} = 2a_2 f(0)=0+0+2a2+6a30++n(n1)an0n2=2a2
∴ a 2 = f ′ ′ ( 0 ) 2 = f ( 2 ) ( 0 ) 2 ! \therefore a_2 = \frac{f''(0)}{2} = \frac{f^{(2)}(0)}{2!} a2=2f(0)=2!f(2)(0)

f ′ ′ ( x ) = ∑ i = 0 n [ i ( i − 1 ) a i ] x i − 2 f''(x) = \sum_{i=0}^{n} [i (i-1) a_i] x^{i-2} f(x)=i=0n[i(i1)ai]xi2

我们对它求三阶导:

f ′ ′ ′ ( x ) = 0 + 0 + 0 + 6 a 3 + ⋯ + n ( n − 1 ) ( n − 2 ) a n x n − 3 f'''(x) = 0 + 0 + 0 + 6a_3 + \cdots + n(n-1)(n-2)a_nx^{n-3} f(x)=0+0+0+6a3++n(n1)(n2)anxn3

∴ f ′ ′ ′ ( 0 ) = 0 + 0 + 0 + 6 a 3 + ⋯ + n ( n − 1 ) ( n − 2 ) a n ∗ 0 n − 3 = 6 a 3 \therefore f'''(0) = 0 + 0 + 0 + 6a_3 + \cdots + n(n-1)(n-2)a_n*0^{n-3} = 6a_3 f(0)=0+0+0+6a3++n(n1)(n2)an0n3=6a3
∴ a 3 = f ′ ′ ′ ( 0 ) 6 = f ( 3 ) ( 0 ) 3 ! \therefore a_3 = \frac{f'''(0)}{6} = \frac{f^{(3)}(0)}{3!} a3=6f(0)=3!f(3)(0)

f ′ ′ ′ ( x ) = ∑ i = 0 n [ i ( i − 1 ) ( i − 2 ) a i ] x i − 3 f'''(x) = \sum_{i=0}^{n}[i(i-1)(i-2)a_i]x^{i-3} f(x)=i=0n[i(i1)(i2)ai]xi3

以此类推我们可以得到:

∴ a n = f ( n ) ( 0 ) n ! \therefore a_n = \frac{f^{(n)}(0)}{n!} an=n!f(n)(0)

∴ f ( x ) = ∑ n = 0 N f ( n ) ( 0 ) n ! x n + R n ( x ) \therefore f(x) = \sum_{n=0}^{N} \frac{f^{(n)}(0)}{n!} x^n + Rn(x) f(x)=n=0Nn!f(n)(0)xn+Rn(x)

推广 :
f ( x ) = ∑ n = 0 N f ( n ) ( a ) n ! ( x − a ) n + R n ( x ) f(x) = \sum_{n=0}^{N} \frac{f^{(n)}(a)}{n!} (x-a)^n + Rn(x) f(x)=n=0Nn!f(n)(a)(xa)n+Rn(x)


二级结论 :

f ( x ) = e x ∴ f ( n ) ( 0 ) = 1 f(x) = e^x \therefore f^{(n)}(0) = 1 f(x)=exf(n)(0)=1
∴ e x = ∑ n = 0 N x n n ! = 1 + x + x 2 2 ! + x 3 3 ! + x 4 4 ! + ⋯ \therefore e^x = \sum_{n=0}^{N} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots ex=n=0Nn!xn=1+x+2!x2+3!x3+4!x4+

f ( x ) = sin ⁡ x f(x) = \sin{x} f(x)=sinx
∴ f ( 4 n + 1 ) ( 0 ) = 1        且 f ( 4 n + 2 ) ( 0 ) = 0        且 f ( 4 n + 3 ) ( 0 ) = − 1        且 f ( 4 n + 4 ) ( 0 ) = 0 \therefore f^{(4n+1)}(0) = 1 \;\;\; 且 f^{(4n+2)}(0) = 0 \;\;\; 且 f^{(4n+3)}(0) = -1 \;\;\; 且 f^{(4n+4)}(0) = 0 f(4n+1)(0)=1f(4n+2)(0)=0f(4n+3)(0)=1f(4n+4)(0)=0
∴ s i n x = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + ⋯ \therefore sinx = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots sinx=x3!x3+5!x57!x7+

f ( x ) = cos ⁡ x f(x) = \cos{x} f(x)=cosx
∴ f ( 4 n + 1 ) ( 0 ) = 0        且 f ( 4 n + 2 ) ( 0 ) = − 1        且 f ( 4 n + 3 ) ( 0 ) = 0        且 f ( 4 n + 4 ) ( 0 ) = 1 \therefore f^{(4n+1)}(0) = 0 \;\;\; 且 f^{(4n+2)}(0) = -1 \;\;\; 且 f^{(4n+3)}(0) = 0 \;\;\; 且 f^{(4n+4)}(0) = 1 f(4n+1)(0)=0f(4n+2)(0)=1f(4n+3)(0)=0f(4n+4)(0)=1
∴ c o s x = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + ⋯ \therefore cosx = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots cosx=12!x2+4!x46!x6+

最后一个等号只有在 α ∈ N + \alpha \in N_+ αN+ 的时候才成立。
f ( x ) = ( 1 + x ) α ∴ f ( n ) ( 0 ) = α ( α − 1 ) ( α − 2 ) ⋯ ( α − n + 1 ) = ∏ i = 0 n − 1 ( α − i ) = A α n f(x) = (1 + x)^{\alpha} \therefore f^{(n)}(0) = \alpha (\alpha-1) (\alpha-2) \cdots (\alpha-n+1) = \prod_{i=0}^{n-1}(\alpha-i) = A_{\alpha}^{n} f(x)=(1+x)αf(n)(0)=α(α1)(α2)(αn+1)=i=0n1(αi)=Aαn
∴ ( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + α ( α − 1 ) ( α − 2 ) 3 ! x 3 + ⋯ \therefore (1 + x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3 + \cdots (1+x)α=1+αx+2!α(α1)x2+3!α(α1)(α2)x3+

f ( x ) = ( a + x ) α ∴ f ( n ) ( 0 ) = α ( α − 1 ) ( α − 2 ) ⋯ ( α − n + 1 ) a α − n = [ ∏ i = 0 n − 1 ( α − i ) ] × a α − n = A α n × a α − n f(x) = (a + x)^{\alpha} \therefore f^{(n)}(0) = \alpha(\alpha-1)(\alpha-2)\cdots(\alpha - n + 1) a^{\alpha-n} = \Bigg[\prod_{i=0}^{n-1}(\alpha-i)\Bigg] \times a^{\alpha-n} = A_{\alpha}^n \times a^{\alpha-n} f(x)=(a+x)αf(n)(0)=α(α1)(α2)(αn+1)aαn=[i=0n1(αi)]×aαn=Aαn×aαn

∴ ( a + x ) α = a α + α a α − 1 x + α ( α − 1 ) a α − 2 2 ! x 2 + α ( α − 1 ) ( α − 2 ) a α − 3 3 ! x 3 + ⋯ \therefore (a + x)^{\alpha} = a^{\alpha} + \alpha a^{\alpha-1}x + \frac{\alpha(\alpha-1)a^{\alpha-2}}{2!}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)a^{\alpha-3}}{3!}x^3 + \cdots (a+x)α=aα+αaα1x+2!α(α1)aα2x2+3!α(α1)(α2)aα3x3+

f ( x ) = 1 1 − x ∴ f ( n ) ( 0 ) = n ! f(x) = \frac{1}{1-x} \therefore f^{(n)}(0) = n! f(x)=1x1f(n)(0)=n!

∴ f ( x ) = 1 + x + x 2 + x 3 + x 4 + ⋯ \therefore f(x) = 1 + x + x^2 + x^3 + x^4 + \cdots f(x)=1+x+x2+x3+x4+

关于欧拉公式:

  引入 i = − 1 i = \sqrt{-1} i=1
∴ i 1 = i 且 i 2 = − 1 且 i 3 = − i 且 i 4 = 1 \therefore i^1 = i 且 i^2 = -1 且 i^3 = -i 且 i^4 = 1 i1=ii2=1i3=ii4=1
∴ i 4 n + 1 = i 且 i 4 n + 2 = − 1 且 i 4 n + 3 = − i 且 i 4 n + 4 = 1 ( 其 中 n ∈ Z ) \therefore i^{4n+1} = i 且 i^{4n+2} = -1 且 i^{4n+3} = -i 且 i^{4n+4} = 1 (其中 n \in Z) i4n+1=ii4n+2=1i4n+3=ii4n+4=1(nZ)
∵ e x = 1 + x + x 2 2 ! + x 3 3 ! + x 4 4 ! + x 5 5 ! + ⋯ \because e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \cdots ex=1+x+2!x2+3!x3+4!x4+5!x5+

∴ e i x = 1 + i x + ( i x ) 2 2 ! + ( i x ) 3 3 ! + ( i x ) 4 4 ! + ( i x ) 5 5 ! + ⋯ = 1 + i x − x 2 2 ! − i x 3 3 ! + x 4 4 ! + i x 5 5 ! − x 6 6 ! − i x 7 7 ! + ⋯ = ( 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + ⋯   ) + ( i x − i x 3 3 ! + i x 5 5 ! − i x 7 7 ! + ⋯   ) = ( 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + ⋯   ) + i ( x − x 3 3 ! + x 5 5 ! − x 7 7 ! + ⋯   ) = cos ⁡ x + i sin ⁡ x \begin{aligned} \therefore e^{ix} = &1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \cdots \\ = &1 + ix -\frac{x^2}{2!} - \frac{ix^3}{3!} + \frac{x^4}{4!} + \frac{ix^5}{5!} - \frac{x^6}{6!} - \frac{ix^7}{7!} + \cdots \\ = &(1 -\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots) + (ix - \frac{ix^3}{3!} + \frac{ix^5}{5!} - \frac{ix^7}{7!} + \cdots) \\ = &(1 -\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots) + i(x - \frac{x^3}{3!} + \frac{x^5}{5!}- \frac{x^7}{7!} + \cdots) \\ = &\cos{x} + i\sin{x} \end{aligned} eix=====1+ix+2!(ix)2+3!(ix)3+4!(ix)4+5!(ix)5+1+ix2!x23!ix3+4!x4+5!ix56!x67!ix7+(12!x2+4!x46!x6+)+(ix3!ix3+5!ix57!ix7+)(12!x2+4!x46!x6+)+i(x3!x3+5!x57!x7+)cosx+isinx

∴ e i x = cos ⁡ x + i sin ⁡ x \therefore e^{ix} = \cos{x} + i\sin{x} eix=cosx+isinx

       当 x = π x = \pi x=π 时:

e i π = cos ⁡ π + i sin ⁡ π = − 1 e^{i\pi} = \cos{\pi} + i\sin{\pi} = -1 eiπ=cosπ+isinπ=1
∴ e i π + 1 = 0 \therefore e^{i\pi} + 1 = 0 eiπ+1=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值