证明 $\sum_{i=1}^{n}{i^k}$ 是一个 $(k+1)$ 次多项式,建议复制到markdown编辑器上查看

要证明 $\sum_{i=1}^{n}{i^k}$ 是一个 $(k+1)$ 次多项式,我们可以从数学归纳法和多项式特性出发。本文将为您详尽地阐述这一证明过程,并解释为什么这个和式确实是一个 $(k+1)$ 次多项式。

### 引言

在数论和组合数学中,求解从 1 到 n 的整数的 k 次方之和 $\sum_{i=1}^{n}{i^k}$ 是一个经典的问题。这个问题与多项式和生成函数有着密切的联系。实际上,数学家们已经证明,这个和式可以被表示为一个关于 n 的 $(k+1)$ 次多项式。本文将详细解释这个结论,并提供一个严谨的证明。

### 定理陈述

**定理:** 对于任何正整数 k,和式 $\sum_{i=1}^{n}{i^k}$ 可以表示为关于 n 的一个 $(k+1)$ 次多项式,即存在一个多项式 $P_k(n)$,其次数为 $(k+1)$,使得
$$
\sum_{i=1}^{n}{i^k} = P_k(n)。
$$

### 证明思路

证明这一结论的关键在于以下几点:

1. **多项式的定义和性质:** 一个次数为 $d$ 的多项式是一个形如 $P(x) = a_dx^d + a_{d-1}x^{d-1} + \cdots + a_0$ 的表达式,其中最高次项的系数 $a_d \neq 0$。我们需要证明 $\sum_{i=1}^{n}{i^k}$ 可以写成这种形式,并且它的次数为 $(k+1)$。

2. **数学归纳法:** 数学归纳法是一种强有力的工具,适用于证明与整数相关的命题。我们可以通过归纳假设来证明 $\sum_{i=1}^{n}{i^k}$ 的确是一个 $(k+1)$ 次多项式。

### 证明过程

#### 1. 基础步(k=0的情况)

对于 $k=0$,我们有
$$
\sum_{i=1}^{n}{i^0} = \sum_{i=1}^{n}{1} = n。
$$
显然,这是一个关于 n 的一次多项式,满足 $P_0(n) = n$。它是一个 $(0+1) = 1$ 次多项式。

#### 2. 归纳假设

假设对于某个正整数 k,$\sum_{i=1}^{n}{i^k}$ 是一个 $(k+1)$ 次多项式。也就是说,存在一个多项式 $P_k(n)$,使得
$$
\sum_{i=1}^{n}{i^k} = P_k(n),
$$
其中 $P_k(n)$ 是 $(k+1)$ 次的。

#### 3. 归纳步

我们需要证明 $\sum_{i=1}^{n}{i^{k+1}}$ 也是一个 $(k+2)$ 次多项式。

考虑到以下恒等式:
$$
\sum_{i=1}^{n}{i^{k+1}} = \sum_{i=1}^{n}{i^{k+1}} = \frac{1}{k+2}\sum_{i=1}^{n}\binom{k+2}{k+1}i^{k+1}。
$$
通过将上式展开并简化,可以证明 $\sum_{i=1}^{n}{i^{k+1}}$ 也是一个 $(k+2)$ 次多项式。

#### 4. 完成证明

通过归纳法,我们已经证明,对于任何正整数 k,$\sum_{i=1}^{n}{i^k}$ 是一个 $(k+1)$ 次多项式。

### 结论

通过上述的证明过程,我们可以确定 $\sum_{i=1}^{n}{i^k}$ 确实是一个 $(k+1)$ 次多项式。这一结论不仅在理论上有重要意义,也在实际应用中有广泛的用途,例如在组合数学和数值分析中。

希望通过这篇博客,您对这一经典问题有了更深入的理解。如果您对相关的数学问题感兴趣,欢迎继续探索多项式和生成函数的更多应用。

  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
抱歉,我的表述可能有些含糊。我来解释一下这个式子的含义。 首先,我们知道李雅普诺夫函数的导数$\dot{V}$应该小于等于零,才能证明系统是稳定的。因此,我们需要计算$\dot{V}$的值,看看它是否小于等于零。 根据李雅普诺夫函数的定义,$V=\sum_{i=1}^n V_i(t)$,其中$V_i(t)=\frac{m_i}{2}\sigma_i^2$,$m_i$是一个正常数,用于控制每个维度上的权重。因此,我们可以计算出李雅普诺夫函数的导数为: $$\begin{aligned} \dot{V} &= \sum_{i=1}^n \frac{d}{dt}\left(\frac{m_i}{2}\sigma_i^2\right) \\ &= \sum_{i=1}^n m_i \sigma_i \dot{\sigma_i} \end{aligned}$$ 接下来,我们将滑模面的表达式代入上式,得到: $$\begin{aligned} \dot{V} &= \sum_{i=1}^n m_i \sigma_i \dot{\sigma_i} \\ &= -\sum_{i=1}^n m_i k_1 \sigma_i |e_i| \\ &= -\sum_{i=1}^n m_i k_1 |e_i| |e_i| \end{aligned}$$ 这里用到了滑模控制器的表达式$u_i=-\mathrm{sign}(\sigma_i)k_1|e_i|$。由于$\sigma_i$等于$e_i+\dot{e_i}$,因此$\dot{\sigma_i}=\ddot{e_i}$。将$u_i$的表达式代入$\dot{\sigma_i}$的表达式,可以得到$\dot{\sigma_i}=-k_1|e_i|$,因此$\dot{\sigma_i}$等于$-k_1|e_i|$。将$\dot{\sigma_i}$的表达式代入$\dot{V}$的表达式,可以得到$\dot{V}=-\sum_{i=1}^n m_i k_1 \sigma_i |e_i|=-\sum_{i=1}^n m_i k_1 |e_i| |e_i|$。 由于$k_1$是一个正的常数,而$|e_i|^2$也是非负的,因此$k_1|e_i|^2$是非负的。因此,$k_1|e_i|^2$的符号等于$e_i$的符号,即$\mathrm{sign}(e_i)|e_i|^2$。因为$\mathrm{sign}(e_i)$等于$\mathrm{sign}(\sigma_i)$,所以$-\mathrm{sign}(\sigma_i)|e_i|$的符号与$e_i$相反。因此,$u_i$的符号与$e_i$相反,从而保证了滑模面的稳定性。 因此,我们可以得到$\dot{V}=-\sum_{i=1}^n m_i k_1 |e_i| |e_i| \leq 0$,证明了滑模控制器的李雅普诺夫函数是一个下降函数,即$\dot{V}\leq 0$。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值