Timm一些使用技巧,包括手动下载模型

最近在使用timm,总结了一些方法,可能会对读者有帮助。

1. 首先是安装timm包

pip intall timm

2. 通过下面代码展示timm具有的模型名称,根据输出模型的名称选择自己需要的模型:

model_list = timm.list_models()

print(model_list)

3. 加载模型。

model = timm.create_model('convnext_base', pretrained=True, num_classes=2)

但是因为timm的升级,导致了国内无法连接到Hugging Face网站,没有办法使用手动下载预训练模型。总是出现这样的错误:

huggingface_hub.utils._errors.LocalEntryNotFoundError: Connection error, and we cannot find the requested files in the disk cache.

4. 针对上述无法连接的问题,采用这样的解决方案,首先

model = timm.create_model('convnext_base', num_classes=2, global_pool='')#pretrained=True,

print(model.default_cfg)#查看模型cfg

得到

{'url': 'https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_1k_224.pth',

科学上网,手动下载这个预训练模型。

pre_path = ' 下载预训练模型权重的文件路径'

model = timm.create_model('convnext_base', pretrained=True, num_classes=2, pretrained_cfg_overlay=dict(file=pre_path ))

这样就解决了,连接失败的问题,就可以正常使用手动下载的预训练模型了。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值