通义千问qwen3发布

阿里巴巴于2025年4月29日凌晨正式发布并开源了新一代大语言模型——通义千问Qwen3(简称“千问3”),标志着中国在开源AI领域迈出了重要一步。 该模型在多个基准测试中表现优异,性能超越了DeepSeek-R1、OpenAI o1等全球顶尖模型,成为全球最强的开源模型之一。

Qwen3 的核心亮点

1. 混合推理架构:快思考与慢思考结合

### 如何在 RAGFlow 中配置通义 APIKey 在 RAGFlow 中集成通义的 API 密钥涉及多个步骤,主要包括环境准备、API 配置以及模型调用设置。以下是详细的说明: #### 环境准备 RagFlow 是基于 Docker 安装的工具链,在本地环境中运行时需要注意网络地址映射题。如果 RagFlow 使用的是 Docker 容器,则需要通过 `host.docker.internal` 来访宿主机上的服务资源[^1]。 #### 集成通义 APIKey 要将通义的 APIKey 整合到 RAGFlow 中,可以按照以下方法操作: 1. **获取 APIKey**: 登录阿里云控制台并创建相应的 API 访权限,记录下生成的 Access Key ID 和 Secret[^2]。 2. **修改配置文件**: 找到 RagFlow 的核心配置文件(通常位于项目的根目录下的 `.env` 或者 `config.yaml` 文件)。在此文件中添加如下字段来指定通义的服务端点和认证信息: ```yaml QWEN_API_KEY: "your_api_key_here" QWEN_ENDPOINT: "https://api.qwen.com/v1/chat/completions" ``` 3. **更新代码逻辑**: 如果默认情况下未提供对通义的支持,可能还需要调整部分 Python 脚本以支持新的 LLM 接口。例如,可以通过 LangChain 提供的 Wrapper 方法完成适配工作: ```python from langchain.llms import Qwen llm = Qwen(model_name="qwen-max", api_key="your_api_key_here") response = llm.predict("你好,世界!") print(response) ``` 上述代码片段展示了如何利用 LangChain 封装好的类快速接入通义实例。 4. **测试连接性**: 启动应用后验证是否能够成功调用远程大模型接口返回预期结果。确保所有依赖项均已正确加载并且通信路径畅通无阻。 #### 注意事项 - 当前版本可能存在兼容性差异,请参照官方最新发布指南执行具体实施细节; - 对于安全性较高的生产场景建议采用 HTTPS 加密传输方式保护敏感数据交换过程中的隐私泄露风险; ```python import os from langchain.llms import Qwen def initialize_qwen(): """初始化通义客户端""" api_key = os.getenv('QWEN_API_KEY') endpoint_url = 'https://api.qwen.com/v1/chat/completions' if not api_key: raise ValueError("Environment variable QWEN_API_KEY is missing.") try: model_instance = Qwen( model_name='qwen-turbo', temperature=0.7, max_tokens=512, api_key=api_key ) test_output = model_instance.predict("这是一个简单的测试请求。") return {"status": True, "message": f"Model initialized successfully! Test output:{test_output}"} except Exception as e: return {"status": False, "error_message": str(e)} ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不务正业的猿

谢谢您的支持与鼓励!!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值