欢迎Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。
均方误差损失
均方误差(MSE,Mean Squared Error)是回归问题中评估预测误差的一种广泛使用的指标。在回归中,目标是预测连续值,例如根据房屋的特征(如面积、位置、卧室数量等)估计房屋的价格。
MSE 损失前向方程
计算从计算模型预测( A A A)与实际真值( Y Y Y)之间的平方误差( S E SE SE)开始:
S E ( A , Y ) = ( A − Y ) ⊙ ( A − Y ) SE(A, Y) = (A - Y) \odot (A - Y) SE(A,Y)=(A−Y)⊙(A−Y)
接下来,我们确定平方误差之和( S S E SSE SSE)。这里, ι N \iota_N ιN 和 ι C \iota_C ιC 分别表示大小为 N N N 和 C C C 的、填充有 1 的列向量:
S S E ( A , Y ) = ι N T ⋅ S E ( A , Y ) ⋅ ι C SSE(A,Y) = \iota_{N}^{T} \cdot SE(A,Y) \cdot \iota_{C} SSE(A,Y)=ιNT⋅SE(A,Y)⋅ιC
这个操作将 S E ( A , Y ) SE(A, Y) SE(A,Y) 矩阵中的所有元素求和,该矩阵的维度为 N × C N \times C N×C。通过 ι N T \iota_{N}^{T} ιNT 的乘法在行间聚合错误,随后通过 ι C \iota_{C} ιC 的乘法将这些在列间求和,产生一个单一标量的总误差。
然后计算每个组件的均方误差( M S E MSE MSE)损失:
M S E L o s s ( A , Y ) = S S E ( A , Y ) N ⋅ C MSELoss(A, Y) = \frac{SSE(A, Y)}{N \cdot C} MSELoss(A,Y)=N⋅CSSE(A,Y)
MSE 损失反向方程
在反向传播过程中,需要计算 MSE 损失相对于模型输出( A A A)的梯度,以更新模型参数:
M S E L o s s . b a c k w a r d ( ) = 2 ⋅ ( A − Y ) N ⋅ C MSELoss.backward() = 2 \cdot \frac{(A - Y)}{N \cdot C} MSELoss.backward()=2⋅