【漫话机器学习系列】001.Adaboost算法

Adaboost(Adaptive Boosting)是一种经典的集成学习方法,主要思想是通过将多个弱学习器(通常是简单模型,如决策树桩)加权组合,来提升整体模型的预测能力。Adaboost 是一种自适应的学习方法,能够不断调整弱学习器的训练过程,专注于难分类的样本,从而逐步提高分类性能。

1. 背景与基本原理

在机器学习中,弱学习器是指其分类准确率略高于随机猜测的学习器。Adaboost的目标是将多个弱学习器组合成一个强学习器,来提高分类精度。它的基本原理是:

  • 每个弱学习器会根据当前的样本权重进行训练,样本权重较大的样本对训练结果影响更大。
  • 在每一轮训练中,Adaboost 会调整样本的权重,使得上一轮分类错误的样本权重增大,上一轮分类正确的样本权重减小,从而让后续的弱学习器更加关注难以分类的样本。
  • 最终,Adaboost 会将所有弱学习器加权组合,形成一个强学习器。

2. 算法步骤

以下是 Adaboost 算法的详细步骤:

2.1 初始化

假设有 N 个训练样本,每个样本的特征为 \mathbf{x}_i​ 和标签为 y_i \in \{-1, 1\},其中 y_i = 1 代表正样本,y_i = -1 代表负样本。所有样本的初始权重设置为均等的:

w_i^{(1)} = \frac{1}{N}, \quad i = 1, 2, \dots, N

2.2 迭代训练弱学习器

Adaboost 会进行 T 次迭代(即训练 T 个弱学习器)。在每一轮 t:

  1. 训练弱学习器
    在当前样本权重的基础上训练一个弱学习器 h_t(x),其目标是最小化加权的训练误差。常用的弱学习器是决策树桩(深度为1的决策树)。

  2. 计算弱学习器的错误率
    计算当前弱学习器的加权错误率(即样本分类错误的权重总和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值