【漫话机器学习系列】004.赤池信息量准则(AIC:Akaike Information Criterion)

赤池信息量准则(Akaike Information Criterion, AIC)

1. 概念

赤池信息量准则(AIC)是一种用于模型选择的统计方法,由赤池弘次(Hirotugu Akaike)于1974年提出。AIC 平衡了模型的拟合度和复杂性,用来评估一组候选模型中哪一个模型更适合数据。其核心思想是,在追求模型良好拟合的同时,避免模型过于复杂(过拟合)。

2. 公式

AIC 的公式为:

AIC = 2k - 2\ln(\hat{L})

其中:

  • k:模型中的参数个数(自由度)。
  • \hat{L}:模型的最大似然估计值。
  • ln(\hat{L}) 是对数似然值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值