赤池信息量准则(Akaike Information Criterion, AIC)
1. 概念
赤池信息量准则(AIC)是一种用于模型选择的统计方法,由赤池弘次(Hirotugu Akaike)于1974年提出。AIC 平衡了模型的拟合度和复杂性,用来评估一组候选模型中哪一个模型更适合数据。其核心思想是,在追求模型良好拟合的同时,避免模型过于复杂(过拟合)。
2. 公式
AIC 的公式为:
其中:
- k:模型中的参数个数(自由度)。
:模型的最大似然估计值。
- ln(
) 是对数似然值。