【机器学习】机器学习的基本分类-自监督学习-自回归方法(Autoregressive Methods)

自回归方法(Autoregressive Methods) 是一种生成式模型,通过条件概率建模数据的联合分布。它假设当前数据点依赖于前面部分的序列,利用这种依赖关系逐步生成数据。


核心思想

自回归方法的目标是将数据的联合分布 p(x) 分解为条件概率的乘积:

p(x) = p(x_1, x_2, \dots, x_n) = \prod_{i=1}^n p(x_i | x_{<i})

其中, x_{<i} 表示数据点 x_i 之前的所有数据点。

这种分解将复杂的联合分布问题转化为多个条件概率问题,便于学习和建模。


特点

  1. 因果性:模型生成数据时保证顺序性,数据点 x_i​ 只依赖于先前的 x_{<i}​。
  2. 逐点生成:自回归模型逐步生成每个数据点,使其适用于序列数据生成。
  3. 显式分布:自回归模型直接学习数据的概率分布。

自回归方法的主要模型

1. 经典自回归模型

传统统计中的自回归模型(AR 模型)假设数据具有线性关系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值