自回归方法(Autoregressive Methods) 是一种生成式模型,通过条件概率建模数据的联合分布。它假设当前数据点依赖于前面部分的序列,利用这种依赖关系逐步生成数据。
核心思想
自回归方法的目标是将数据的联合分布 p(x) 分解为条件概率的乘积:
其中, 表示数据点
之前的所有数据点。
这种分解将复杂的联合分布问题转化为多个条件概率问题,便于学习和建模。
特点
- 因果性:模型生成数据时保证顺序性,数据点
只依赖于先前的
。
- 逐点生成:自回归模型逐步生成每个数据点,使其适用于序列数据生成。
- 显式分布:自回归模型直接学习数据的概率分布。
自回归方法的主要模型
1. 经典自回归模型
传统统计中的自回归模型(AR 模型)假设数据具有线性关系。