【漫话机器学习系列】059.特征选择策略(Feature Selection Strategies)

特征选择策略(Feature Selection Strategies)

定义

特征选择(Feature Selection)是机器学习和统计建模中用于选择最相关特征的一种方法。其目标是从原始特征集中挑选出对模型性能影响最大的子集,同时减少冗余和噪声特征,从而提高模型的性能和可解释性。


特征选择的重要性
  1. 提升模型性能:减少无关特征可以降低模型的过拟合风险,提高泛化能力。
  2. 加速训练过程:减少特征维度可显著缩短训练时间。
  3. 增强模型可解释性:选出的特征更容易解释模型的预测结果。
  4. 降低存储和计算成本:特征数目减少后,内存和计算资源需求降低。

常用的特征选择策略

特征选择方法通常分为以下三大类:过滤法(Filter)、包装法(Wrapper)、嵌入法(Embedded)


1. 过滤法(Filter Methods)

  • 原理:根据统计指标评估特征与目标变量之间的相关性,独
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值