【漫话机器学习系列】061.线性回归参数计算(Finding Linear Regression Parameters)

线性回归参数计算(Finding Linear Regression Parameters)

1. 简介

线性回归是一种基础的回归模型,用于通过一个或多个特征预测目标变量。其模型形式为:

其中:

  • y:目标变量(因变量)。
  • X:特征矩阵(自变量)。
  • β:待求解的回归参数(权重)。
  • ϵ:误差项。

线性回归的目标是找到回归参数 β,使预测值 Xβ 与目标 y 的差距最小。


2. 参数求解公式

通过最小化残差平方和(RSS,Residual Sum of Squares)来确定最佳参数。RSS 定义为:

展开后:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值