线性回归参数计算(Finding Linear Regression Parameters)
1. 简介
线性回归是一种基础的回归模型,用于通过一个或多个特征预测目标变量。其模型形式为:
其中:
- y:目标变量(因变量)。
- X:特征矩阵(自变量)。
- β:待求解的回归参数(权重)。
- ϵ:误差项。
线性回归的目标是找到回归参数 β,使预测值 Xβ 与目标 y 的差距最小。
2. 参数求解公式
通过最小化残差平方和(RSS,Residual Sum of Squares)来确定最佳参数。RSS 定义为:
展开后: