【漫话机器学习系列】062.向前逐步选择法(Forward Stepwise Selection)

向前逐步选择法(Forward Stepwise Selection)

1. 什么是向前逐步选择法?

向前逐步选择法是一种特征选择(Feature Selection)算法,主要用于模型构建时,从一组候选特征中逐步选择对模型性能影响最大的特征。
通过迭代的方式,逐步向模型中添加特征,直到模型达到预期的性能或满足某些停止准则。


2. 目标

  • 简化模型:减少特征数量,提升模型的可解释性。
  • 提升性能:剔除冗余或无关特征,避免过拟合,提高模型的泛化能力。
  • 高效计算:减少特征数量,降低模型计算复杂度。

3. 工作原理

  1. 初始化

    • 开始时模型为空,即没有任何特征。
    • 定义目标函数(例如AIC、BIC、R方、交叉验证误差等)来衡量模型性能。
  2. 逐步选择特征

    • 每次迭代,从剩余候选特征中选择一个对当前模型性能提升最大的特征。
    • 将该特征加入模型。
  3. 重复迭代

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值