向前逐步选择法(Forward Stepwise Selection)
1. 什么是向前逐步选择法?
向前逐步选择法是一种特征选择(Feature Selection)算法,主要用于模型构建时,从一组候选特征中逐步选择对模型性能影响最大的特征。
通过迭代的方式,逐步向模型中添加特征,直到模型达到预期的性能或满足某些停止准则。
2. 目标
- 简化模型:减少特征数量,提升模型的可解释性。
- 提升性能:剔除冗余或无关特征,避免过拟合,提高模型的泛化能力。
- 高效计算:减少特征数量,降低模型计算复杂度。
3. 工作原理
-
初始化:
- 开始时模型为空,即没有任何特征。
- 定义目标函数(例如AIC、BIC、R方、交叉验证误差等)来衡量模型性能。
-
逐步选择特征:
- 每次迭代,从剩余候选特征中选择一个对当前模型性能提升最大的特征。
- 将该特征加入模型。
-
重复迭代: