准确率(Accuracy) 是分类问题中最常见的评价指标之一,表示模型预测正确的样本数量占总样本数量的比例。准确率简单易懂,但在数据不平衡的情况下可能无法很好地反映模型的实际表现。
1. 定义
准确率的计算公式如下:
其中:
- TP (True Positive):真正例,模型正确预测为正类的样本数。
- TN (True Negative):真反例,模型正确预测为负类的样本数。
- FP (False Positive):假正例,模型错误地预测为正类的负类样本数。
- FN (False Negative):假反例,模型错误地预测为负类的正类样本数。
2. 应用场景
准确率常用于分类任务中,尤其是在类别分布均衡的情况下。它适用于一些需要评估总体分类表现的场景,比如:
- 简单的二分类任务,如垃圾邮件分类、肿瘤检测等。<