【漫话机器学习系列】080.准确率(Accuracy)

准确率(Accuracy) 是分类问题中最常见的评价指标之一,表示模型预测正确的样本数量占总样本数量的比例。准确率简单易懂,但在数据不平衡的情况下可能无法很好地反映模型的实际表现。

1. 定义

准确率的计算公式如下:

其中:

  • TP (True Positive):真正例,模型正确预测为正类的样本数。
  • TN (True Negative):真反例,模型正确预测为负类的样本数。
  • FP (False Positive):假正例,模型错误地预测为正类的负类样本数。
  • FN (False Negative):假反例,模型错误地预测为负类的正类样本数。

2. 应用场景

准确率常用于分类任务中,尤其是在类别分布均衡的情况下。它适用于一些需要评估总体分类表现的场景,比如:

  • 简单的二分类任务,如垃圾邮件分类、肿瘤检测等。<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值