matlab中polyfit和polyval的使用(曲线拟合/多项式拟合/指数拟合)

这篇博客介绍了MATLAB中polyfit和polyval函数的使用,通过实例展示了如何进行多项式数据拟合。此外,还详细解释了如何利用polyfit进行指数拟合,通过将指数关系转化为线性关系,再进行线性拟合,最终得到指数函数的解析式。博客内容包括代码示例和图形展示,帮助理解这两个函数在实际问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

matlab中polyfit函数的作用是对数据进行数据拟合

有些小伙伴可能搞不清楚polyfit和polyval之间的区别,这里就直接上我的笔记给大家看看吧

%% 普通的多项式拟合
clear;clc;
num = 30;

x = linspace(0,5,num); % 横轴数据

error = rand(1,num); % 生产误差值
a = x.^2+2*error; % 纵轴数据

p = polyfit(x,a,2); % 使用 polyfit函数 拟合横、纵轴数据得到拟合多项式,储存在p中
% p为多项式的系数矩阵,系数按多项式次数降序排列
% 如 p = [1,2,3] 指2次项次数为1,1次项系数为2,常数项系数为3
% polyfit中第三个参数为拟合曲线的最高次数

y = polyval(p,x) % polyval用于计算出每个横轴坐标(x)在拟合多项式(p)中对应的函数值

plot(x,a,'o',x,y,'-')

【拓展】:下面将给出用polyfit函数进行指数拟合的一种方法

先插入一段基本思路

%% 指数拟合的方法

% 基本思路: 将指数关系转化为线性关系

%       a = A*exp(B*x)
% -->   a/A = exp(B*x)
% -->   ln(a/A) = B*x
% -->   lna = B*x + lnA

% 这样一来,x和a之间的指数关系就转化为了x和lna的线性关系
% 因此可以用polyfit进行多项式拟合

% PS:matlab中系数矩阵是降序排列
%     如[1,2,3]指2次项次数为1,1次项系数为2,常数项系数为3

指数拟合程序:

clear;clc;
num = 30;
x = linspace(0,1,num);
error = rand(1,num);

A0 = 1;
B0 = 2;
a = A0*exp(B0*x)+0.5*error;

sh = log(a); % 先对要拟合的数据取对数

p = polyfit(x,sh,1); % 然后对这个中间量sh进行线性拟合
% B = p(1)
% lnA = p(2)

% -----------------方法一:可以求出指数拟合的解析式------------------------
    B = p(1);
    A = exp(p(2));

    y1 = A*exp(B*x);
    
% -----------------方法二:这种方法绕过求解解析式,直接得到拟合曲线---------
    sh2 = polyval(p,x);
    y2 = exp(sh2);
    

% 可见,两种方式求解得到的结果相同
subplot(1,2,1)
plot(x,a,'o',x,y1,'-')
subplot(1,2,2)
plot(x,a,'o',x,y2,'-')

在处理实验数据或现实世界问题时,多项式拟合是常用的方法之一,尤其适用于数据拟合曲线具有复杂形态的情况。MATLAB提供了强大的工具箱来支持这类计算,其中`polyfit`函数用于拟合多项式,而`polyval`函数用于根据拟合得到的多项式系数计算多项式值。结合这两个函数可以完成从数据拟合到预测的全流程。 参考资源链接:[MATLAB中的温度曲线拟合与插值详解](https://wenku.csdn.net/doc/5sy0hrtbwc?spm=1055.2569.3001.10343) 当需要进行三次多项式拟合时,`polyfit`函数可以接受三个参数:数据点xy,以及多项式的阶数n(对于三次多项式,n=3)。函数返回一个多项式系数向量p,表示拟合得到的多项式。例如,拟合数据点(x, y)可以使用以下代码: p = polyfit(x, y, 3); 其中xy是已知的数据点数组。得到的系数p将按照降幂排列,即p = [a, b, c, d],对应的多项式为f(x) = ax^3 + bx^2 + cx + d。 在完成拟合后,通常需要对结果的准确性进行误差分析。误差分析可以通过比较实际数据点拟合曲线上的对应值来进行。`polyval`函数根据多项式系数向量一系列x值计算多项式的y值。因此,可以使用`polyval`来计算拟合曲线的y值,并与实际数据点进行比较。计算每个点的残差(实际值与拟合值之差),然后求残差的平方,最后计算标准误差,可以使用以下代码进行误差分析: y_fit = polyval(p, x); residuals = y - y_fit; SSE = sum(residuals.^2); std_error = sqrt(SSE / (length(y) - length(p))); 标准误差(std_error)给出了拟合曲线与实际数据点之间差异的一种量化表示,可以用来评估拟合的效果。 为了深入理解MATLAB在插值与拟合中的应用,尤其是多项式拟合技术,建议阅读《MATLAB中的温度曲线拟合与插值详解》。这本书详细讲解了如何利用`polyfit``polyval`等函数进行插值拟合,同时提供了相关案例研究,帮助读者更好地掌握理论知识实际操作技能。在完成对当前问题的解决后,这本书将是进一步深化学习的理想选择。 参考资源链接:[MATLAB中的温度曲线拟合与插值详解](https://wenku.csdn.net/doc/5sy0hrtbwc?spm=1055.2569.3001.10343)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值