【论文学习笔记-8】AANet:Adaptive Aggregation Network for efficient stereo matching(CVPR2020)

【论文学习笔记-8】AANet:Adaptive Aggregation Network for efficient stereo matching(CVPR2020)

本文提出了用尺度内成本聚合(intra-scale cost aggregation method)和尺度间成本聚合层(cross-scale cost aggregation algorithm)来完全替代常被使用的3D卷积层从而大大提高立体匹配算法的速度并保持有竞争力的准确度。前者用于解决视差不连续区域的边缘肥胖问题(edge-fattening issue),后者用于处理大块的无纹理区域。达到了41倍的GC-Net/4倍的PSMNet/38倍的GA-Net的速度,在高速立体匹配算法领域(如Stereo-Net)达到了最好的表现。

3D卷积的问题:速度很慢,如PSM-Net在高性能GPU上也需要4G的内存和410ms来处理一对KITTI图片。GA-Net意识到了3D卷积的弊端,用SGA和LGA尝试替代3D卷积,但是仍然使用了15个3D卷积。本文的目的是完全替代3D卷积并且大大提高计算速度,同时达到SOTA的效果。

Method

首先左右图会经过一个特征提取网络获得经过下采样的特征金字塔,之后计算多尺度下的cost volume,公式为:

在这里插入图片描述

其中s代表金字塔第s层的特征,l代表左图,s代表右图,h,w,w-d代表坐标,<>向量代表内积,N代表特征的通道数。可见使用的costvolume方法非常简单直接用正规化后的内积。

Adaptive-Intra-Scale Aggregation:
这里作者参考的是Local Cost Aggregation:

在这里插入图片描述

可以看到Local Aggregation是类似于滤波器的操作。作者这里使用可变卷积(deformable convolution)[参考文献]来将其进行改造。

先简单介绍可变卷积

首先普通卷积是这样的:
在这里插入图片描述

绿色点代表参与计算的点

空洞卷积是这样的:

在这里插入图片描述
蓝色和红色的点代表参与权重计算的点

可变卷积是这样的:

在这里插入图片描述

可以看到,每个参与权重计算的点(如331的卷积核就是9个点)都在固定位置上发生了偏移,偏移是自适应的。

Intra-Scale Aggregation的本质就是将上述Local-Aggregation与可变卷积进行了结合,计算公式为:

在这里插入图片描述

其中p是中心点,p+pk代表第k个点的初始位置,Δpk是自适应的偏移量,K2代表参与计算的采样点。

显然核心的改变就是加入了Δpk形成自适应采样,这样的成本聚合函数在物体边缘和薄结构上能取得很好的效果。

但是卷积中的参数wk是对内容不敏感/不可知的(content-agnostic),因此又加入了一项位置特异性权重mk(参考文献),mk越大代表这个区域对于输出的影响越大,用以提高可变卷积对于空间形变的表示能力。公式为:

在这里插入图片描述

注意这里需要自适应的是Δpk和mk,这里作者均采用了在CostVolume上进行单层普通卷积生成该参数,作者将所有候选视差分为两组,组内共享Δpk和mk,同时作者还采用了空洞卷积提高灵活性(这里没讲清楚在哪里用的)

Intra-Scale Aggregation(ISA)模块通过三层卷积的残差连接构成,卷积和大小分别是11,33,11。其中33是可变卷积。其中控制channel不变。

Adaptive Cross-Scale Aggregation:
在低/无纹理区域,用更粗的尺度进行匹配像素搜索是更有益的,因为patch size不变的情况下下采样的图片的纹理信息会更加显著。这里将各个尺度的下采样的cost信息结合,公式为:
在这里插入图片描述

其中 C ~ k \tilde{C}^k C~k是通过Intra-Scale Aggregation获得的cost, f k f_k fk是一个预定义函数(直接引用HRNet中的定义)

在这里插入图片描述

其中 I I I是恒等函数,k<s时通过stride>1的卷积进行下采样,k>s时做双线性插值上采样。保证不同层在的costvolume最后的分辨率相同。这里低尺度的costvolume的channel number被减半了,与HR的翻倍不同,这样的粗搜索效率更高。

网络结构

在这里插入图片描述

最后的视差输出函数

在这里插入图片描述

损失函数

在这里插入图片描述

其中V( p )代表该点有没有groundtruth disparity,对应输出1/0, L L L是smooth L1, D D D 代表视差。

总损失函数:

在这里插入图片描述

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值