视觉入门篇——深度学习环境部署(ubuntu系统conda环境配置)

部署运行你感兴趣的模型镜像


前言

这里正式进入深度学习的先期环境配置,我们终于迎来强大的python管理工具,这里也介绍python更加习惯的编辑器pycharm,一起来看看吧


一、pycharm安装与配置

PyCharm​​ 是 JetBrains 推出的面向 ​​Python​​ 的集成开发环境(IDE),提供代码辅助、重构、可视化调试、测试与版本控制等能力,适用于 ​​Windows、macOS、Linux​​。自 ​​2025.1​​ 起,PyCharm 由原先的 ​​Community​​ 与 ​​Professional​​ 双版本调整为​​统一产品​​:核心功能免费,​​Pro 订阅​​解锁高级功能,并提供 ​​30 天 Pro 试用​​。核心功能包含 ​​Jupyter Notebook 支持​​;专业版额外支持 ​​Django、Flask、Pyramid​​ 等 Web 框架及数据库工具等。
这里先给出中文官方链接
社区免费版:https://www.jetbrains.com/ru-ru/edu-products/download/download-thanks-pce.html
统一版本:https://www.jetbrains.com.cn/en-us/pycharm/download/?section=linux

这里我们之间安装社区免费版即可,理由是社区版内存更小哈哈
在这里插入图片描述
这里直接把它放到我们主目录下并进行解压

tar -zxvf pycharm-community-2025.2.3.tar.gz

此时我们就已经安装完了,接下来让我们开启第一次使用它
首先进入到bin目录中/pycharm-community-2025.2.3/bin,并启动pycharm

./pycharm

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

经过一系列无脑安装引导,我们就进入到了pycharm中文页面中。这里你可以像使用vscode一样在插件中安装自己喜欢的主题。
为了避免每次都用命令打开,我们点击左下角的设置点击创建桌面条目
在这里插入图片描述
在这里插入图片描述
其实就是相当于创建一个快捷打开图标(我们还是喜欢点击图标打开应用的)
在这里插入图片描述
关闭当前pycharm后,重新使用图标打开我们就可以右键进行收藏了
在这里插入图片描述
收藏完就会固定在左侧菜单栏中方便我们使用。
如果你觉得这样安装过于麻烦,这里可以使用ubuntu的snap商店安装

sudo snap install pycharm-community --classic

ok,pycharm的使用就讲到这里,接下来进入正式conda的安装

二、conda是什么?

Conda​​ 是一个开源的 ​​包管理与环境管理工具。它可以​​创建、切换、删除独立的 Python 环境,特别适合 ​​数据科学、机器学习、科研开发​​等领域。
常见的conda软件有:anaconda ,miniconda,miniforge。
想要了解更多相关知识可以去官网学习哦

Anaconda​​:包含 Conda + Python + 1000+ 数据科学包(如 pandas、numpy、jupyter 等)
Miniconda​​:最小化 Conda 安装(只含 Conda 和 Python)
Miniforge​​ :由 ​​conda-forge 社区​​维护的轻量级 ​​Conda 发行版​​,默认使用 ​​conda-forge​​ 作为软件源,提供与 Anaconda/Miniconda 兼容但更精简的环境与包管理体验,​​Mambaforge​​ 在 Miniforge 基础上集成了 ​​mamba​​(用 C++ 重写的依赖解析器),依赖解析速度显著更快,命令与 conda 保持兼容。
anaconda官网https://www.anaconda.com/

1、 anaconda/miniconda安装

anaconda/miniconda的安装包可以在官网中找到,但是你会发现下载速度非常感人~
不知道你是否还记得清华源?
这里我们借助清华源去下载
在这里插入图片描述
这里可以选择anaconda或者mini版本,这里推荐大家使用mini用于节省空间,后期我们的conda软件包随着我们下周的pip包的增加大小可能超过10G,这里可以适当减减负
在这里插入图片描述
现在是25年10月,我们选择落后最新版本的三个版本左右或者选择24年的版本,追求稳定
在这里插入图片描述
在这里插入图片描述
速度感人,下载后仍然放到主目录
使用sh命令执行.sh安装文件

sh Miniconda3-py310_25.5.1-1-Linux-x86_64.sh

在这里插入图片描述
这里一直按回车就行,然后会提示你yes or no ,我们当然选择or(B01安装anaconda有时候回车按多了会直接跳出安装程序需要重新执行,哈哈哈)
在这里插入图片描述
这里让我们选择是否安装到默认路径,这个路径我挺喜欢的,就这么安装吧,直接回车
在这里插入图片描述
这里问你是否希望每次打开终端时,Conda 自动可用,我们直接yes(看清楚,默认为no)
在这里插入图片描述
此时我们就安装完毕了。
在这里插入图片描述
这时候重新打开一个终端,我们就会自动激活base环境
在这里插入图片描述
输入python,验证一下
在这里插入图片描述
确实是我们安装的版本。到此我们完成了anaconda/miniconda的安装

2、Miniforge(我更喜欢)

miniforge的好处已经写在上面了,多次使用之后我最终选择了Miniforge,因为他在conda安装命令的时候可以使用mamba命令代替,确实快
这里给出github下载链接
https://github.com/conda-forge/miniforge/releases
在这里插入图片描述

如果你能忍受这个下载速度,可以
不过我这里给出一种wget加速下载的方法
之前有同学问,wget后面的网址是怎么得到的。这里可以讲一下,我现在要下载的是linux-86_64.sh,这里选中复制链接就可以得到
在这里插入图片描述

wget https://github.com/conda-forge/miniforge/releases/download/25.3.1-0/Miniforge3-25.3.1-0-Linux-x86_64.sh

在这里插入图片描述
这时候有一个加速方法就是,在网站前面加上这个网站https://hub.gitmirror.com/,最后得到

wget https://hub.gitmirror.com/https://github.com/conda-forge/miniforge/releases/download/25.3.1-0/Miniforge3-25.3.1-0-Linux-x86_64.sh

在这里插入图片描述
这样就是一种新的加速下载github二进制文件方法,你学会了么?

miniforge安装方法前期与anaconda一模一样
但是在你输入yes后,会出现一个报错

在这里插入图片描述

这个报错,不用管!!!重新打开终端即可

在这里插入图片描述
在这里插入图片描述
测试仍然有效

3、conda配置

不自动激活base环境

我们只在深度学习训练过程中会使用到我们的conda环境,在不使用它的时候,我们其实更想一直使用本地的python环境。但是由于我们已经设置了每次打开终端后自动激活base环境,因此这里需要输入一条conda指令,使得我们只在有需要的时候手动激活

conda config --set auto_activate_base false

输完命令后,重新打开终端,发现没有base标志,输入python进行验证
在这里插入图片描述
手动激活conda activate,验证
在这里插入图片描述
说明conda环境尽在掌握

conda换源

是的没错,与软件源,pip源一样,conda也有自己的镜像源,我们需要进行国产镜像的更换,这里需要使用到的是——清华源(哈哈哈哈)

换源方式有两种,一种是conda命令换源

conda config --set show_channel_urls yes #下载包时显示来源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge 
conda config --set channel_priority strict #设置通道有限级

此时我们点开文件夹找到三条横线,选中显示隐藏文件,会看到**.condarc**
在这里插入图片描述
这里存放着我们conda源的地址和我们之前设置的取消自动激活的指令
![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/372283dd1f894236bc22fcd642a4d911.png
验证是否换源成功

conda config --show channels

在这里插入图片描述

恢复默认源

conda config --remove-key channels

这里再给出其他的源

#中科大
https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
#阿里云
https://mirrors.aliyun.com/anaconda/cloud/conda-forge/
#华为云
https://repo.huaweicloud.com/anaconda/cloud/conda-forge/

三、卸载conda软件

首先删除文件夹

rm -rf ~/anaconda3

再删除.bashrc中的初始化配置
在这里插入图片描述
别忘了source ~/.bashrc

四、亲手创建一个python虚拟环境

我们后期都有用到pytorch,这里我们就以创建一个python版本为3.9,名为pytorch的虚拟环境
创建环境:conda create -n python=<版本>

conda create -n pytorch python=3.9

在这里插入图片描述
在这里插入图片描述

等待一段时间,如果你使用的是miniforge,我们将conda换成mamba,速度会很快。都使用的清华源其实差不多
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
激活环境: conda activate myenv

conda activate pytorch

在这里插入图片描述
前面出现环境名称说明已经进入pytorch环境

五、常用命令(必须掌握)

#查看 conda 版本
conda --version
#查看所有环境
conda info --envs
#创建环境
conda create --name myenv python=3.10
#激活环境
conda activate myenv
#退出环境
conda deactivate
#安装包
conda install numpy
#使用 pip 安装
pip install package
#查看已安装包
conda list
#删除环境
conda env remove --name myenv
#导出环境
conda env export > environment.yml
# 从文件创建环境
conda env create -f environment.yml

六、conda与pycharm联动

刚才我们已经创建了虚拟环境pytorch,现在让我们在pycharm中去调用它。
先让我们在主目录新建一个learn_python文件夹
在这里插入图片描述
右键选择其他应用打开,找到pycharm并选择信任
在这里插入图片描述
在这里插入图片描述
此时会自动创建一个main.py并提示未为项目配置python解释器
在这里插入图片描述
点击右下角无解释器在这里插入图片描述
添加新的解释器添加本地解释器
在这里插入图片描述
选择现有
在这里插入图片描述
在下拉菜单中找到conda,第一次导入conda时需要找到可执行文件,这里我们选择路径(这体现了linux路径的重要性,需要牢记)
在这里插入图片描述
在conda软件文件夹中找到condabin文件夹选中conda
在这里插入图片描述
点击重新加载环境
在这里插入图片描述
在环境下拉选择pytorchr然后确定
在这里插入图片描述
此时右下角已经显示pytorch字样,说明当前文件夹的python解释器切换成了pytoch虚拟环境
在这里插入图片描述
点击pycharm左下角终端标志,会弹出已经激活的pytorch终端
在这里插入图片描述
此时pycharm与pytorch进行了绑定,你同样可以绑定其他环境。

在之前系统配置中我们安装了vscode并且配置了python插件,你是否可以在vscode中按照pycharm类似的做法将虚拟环境绑定到vscode的文件夹呢?


总结

这章结束后,你就算正式完成了用于竞赛的简单深度学习训练环境。接下来你将要学习,数字图像、卷积操作、神经网络、深度学习等相关知识从而实现一个模型的训练,你准备好了吗?

您可能感兴趣的与本文相关的镜像

Python3.11

Python3.11

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

### 环境准备与依赖安装 在开始配置深度学习环境之前,确保系统已经更新到最新状态,并安装必要的开发工具链。以下是推荐的步骤: ```bash sudo apt-get update sudo apt-get install build-essential cmake git unzip pkg-config sudo apt-get install python3-pip python3-dev python3-venv ``` 这些命令将安装基础的编译工具、Python环境以及相关依赖项,为后续的深度学习框架安装打下基础[^2]。 ### NVIDIA驱动与CUDA安装 对于支持GPU加速的深度学习任务,首先需要正确安装NVIDIA显卡驱动和CUDA工具包。以下是一般步骤: 1. **禁用 Nouveau 驱动**: ```bash sudo bash -c "echo blacklist nouveau > /etc/modprobe.d/blacklist-nvidia-nouveau.conf" sudo update-initramfs -u ``` 2. **重启系统并进入TTY模式安装驱动**: 使用 `sudo apt install nvidia-driver-<version>` 安装特定版本的驱动程序,其中 `<version>` 是您所需的驱动版本号。 3. **安装 CUDA Toolkit**: 可以通过官方仓库或者下载.run文件进行安装。推荐使用conda管理CUDA版本,例如: ```bash conda install cudatoolkit=11.8 -c nvidia ``` 这样可以避免不同项目之间的CUDA版本冲突[^4]。 ### Python虚拟环境配置 为了保持环境的干净与隔离,建议使用虚拟环境(如 `venv` 或 `conda`)来管理Python包。创建一个新的虚拟环境并激活它: ```bash python3 -m venv myenv source myenv/bin/activate ``` 如果使用Conda,则可以通过以下命令创建环境: ```bash conda create --name myenv python=3.9 conda activate myenv ``` 选择合适的Python版本以确保与所使用的深度学习框架兼容性[^4]。 ### 安装深度学习框架 #### PyTorch 安装PyTorch时,请根据您的硬件配置选择适当的版本。例如,在具有CUDA 11.8支持的环境中安装PyTorch 2.2.0: ```bash pip install torch torchvision torchaudio ``` 如果您遇到了与cuBLAS库相关的错误,可以通过重新安装匹配的CUDA工具包解决这个问题。 #### TensorFlow 对于TensorFlow用户,同样需要注意CUDA和cuDNN的版本匹配问题。安装TensorFlow GPU版本的方法如下: ```bash pip install tensorflow-gpu==2.11.0 ``` 请替换 `2.11.0` 为您想要安装的具体版本,并确认该版本支持当前系统的CUDA/cuDNN版本[^3]。 ### Jupyter Notebook集成 为了让Jupyter Notebook能够识别新创建的Python环境,需将其添加至内核中: ```bash python -m ipykernel install --user --name=myenv --display-name "Python (myenv)" ``` 这样就可以在Jupyter Notebook中切换不同的Python环境,方便进行多项目的开发与测试[^1]。 ### 监控与调试工具 为了更好地监控GPU使用情况及优化性能,可以安装一些实用工具: ```bash pip install nvitop matplotlib ``` 这将允许您实时查看GPU资源利用率,帮助诊断潜在的瓶颈问题[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值