时域卷积定理的证明 | 卷积的傅里叶变化等于傅里叶变换的乘积

∫ R f ∗ g exp ⁡ ( − 2 π i z v ) d z = ∫ R ∫ R f ( x ) g ( z − x ) d x exp ⁡ ( − 2 π i z v ) d z = ∫ R ∫ R f ( x ) g ( z − x ) exp ⁡ ( − 2 π i z v ) d z d x = ∫ R ∫ R g ( z − x ) exp ⁡ ( − 2 π i z v ) d z f ( x ) d x = 令 z − x = t ∫ R ∫ R g ( t ) exp ⁡ ( − 2 π i ( t + x ) v ) d t f ( x ) d x = ∫ R ∫ R g ( t ) exp ⁡ ( − 2 π i t v ) d t f ( x ) exp ⁡ ( − 2 π i x v ) d x = ∫ R g ( t ) exp ⁡ ( − 2 π i t v ) d t ∫ R f ( x ) exp ⁡ ( − 2 π i x v ) d x \begin{aligned} \int_R f*g\exp(-2\pi izv){\rm d}z&=\int_R\int_Rf(x)g(z-x){\rm d}x\exp(-2\pi izv){\rm dz}\\ &=\int_R\int_Rf(x)g(z-x)\exp(-2\pi izv){\rm dz}{\rm d}x\\ &=\int_R\int_Rg(z-x)\exp(-2\pi izv){\rm dz}f(x){\rm d}x\\ &\xlongequal{\text{令}z-x=t}{}\int_R\int_Rg(t)\exp(-2\pi i(t+x)v){\rm d}tf(x){\rm d}x\\ &=\int_R\int_Rg(t)\exp(-2\pi itv){\rm d}tf(x)\exp(-2\pi ixv){\rm d}x\\ &=\int_Rg(t)\exp(-2\pi itv){\rm d}t\int_Rf(x)\exp(-2\pi ixv){\rm d}x \end{aligned} Rfgexp(2πizv)dz=RRf(x)g(zx)dxexp(2πizv)dz=RRf(x)g(zx)exp(2πizv)dzdx=RRg(zx)exp(2πizv)dzf(x)dxzx=t RRg(t)exp(2πi(t+x)v)dtf(x)dx=RRg(t)exp(2πitv)dtf(x)exp(2πixv)dx=Rg(t)exp(2πitv)dtRf(x)exp(2πixv)dx


参考资料
卷积定理
乘积的傅里叶变换等于分别做傅里叶变换的卷积乘1/2pi

2022年5月6日17:03:02

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值