考研数学各种性质的函数/数列/级数

  1. 数列 x n {x_n} xn极限不存在且有界,数列 y n {y_n} yn极限不存在且无界,但 x n y n {x_n}{y_n} xnyn极限存在: x n = 1 , 1 2 , 1 , 1 3 , . . . , 1 , 1 n , . . . , {x_n} = 1, \frac{1}{2}, 1, \frac{1}{3}, ... , 1, \frac{1}{n}, ..., xn=1,21,1,31,...,1,n1,... y n = 1 , 2 , 1 , 3 , . . . , 1 , n , . . . {y_n} = 1, 2, 1, 3, ... , 1, n, ... yn=1,2,1,3,...,1,n,...
  2. 数列 x n {x_n} xn极限不存在且有界,数列 y n {y_n} yn极限不存在且无界,但 x n y n {x_n}{y_n} xnyn极限不存在且不是无穷大: x n = sin ⁡ n π 2 {x_n} = \sin{\frac{nπ}{2}} xn=sin2nπ y n = n {y_n} = n yn=n
  3. 数列 x n {x_n} xn极限不存在且有界,数列 y n {y_n} yn极限不存在且无界,但 x n y n {x_n}{y_n} xnyn极限为无穷大: x n = ( − 1 ) n , y n = ( − 1 ) n ⋅ n x_n = (-1)^n, y_n = (-1)^n\cdot n xn=(1)n,yn=(1)nn
  4. lim ⁡ x → x 0 f ( x ) = 0 \lim\limits_{x \to x_0} f(x) = 0 xx0limf(x)=0,但 lim ⁡ x → x 0 1 f ( x ) ≠ ∞ \lim\limits_{x \to x_0} \frac{1}{f(x)} \neq \infty xx0limf(x)1=: f ( x ) = x sin ⁡ 1 x f(x) = x\sin{\frac{1}{x}} f(x)=xsinx1
  5. f ( x ) f(x) f(x)连续, g ( x ) g(x) g(x)不连续,但 f ( x ) g ( x ) f(x)g(x) f(x)g(x)连续: f ( x ) = 0 f(x) = 0 f(x)=0 g ( x ) = { − 1 x < 0 1 x ≥ 0 g(x)=\left\{ \begin{aligned} -1 && x < 0\\ 1 && x \geq 0 \end{aligned} \right. g(x)={11x<0x0
  6. 函数 u = g ( x ) u = g(x) u=g(x) x 0 x_0 x0不连续, y = f ( u ) y = f(u) y=f(u) u = u 0 u = u_0 u=u0连续,其中 u 0 = g ( x 0 ) u_0 = g(x_0) u0=g(x0),但复合函数 y = f [ g ( x ) ] y = f[g(x)] y=f[g(x)] x 0 x_0 x0却是连续的: y = f ( u ) = 0 y = f(u) = 0 y=f(u)=0 u = g ( x ) = { − 1 x < 0 1 x ≥ 0 u = g(x)=\left\{ \begin{aligned} -1 && x < 0\\ 1 && x \geq 0 \end{aligned} \right. u=g(x)={11x<0x0
  7. 函数 u = g ( x ) u = g(x) u=g(x) x 0 x_0 x0不连续, y = f ( u ) y = f(u) y=f(u) u = u 0 u = u_0 u=u0也不连续,其中 u 0 = g ( x 0 ) u_0 = g(x_0) u0=g(x0),但复合函数 y = f [ g ( x ) ] y = f[g(x)] y=f[g(x)] x 0 x_0 x0却是连续的: y = f ( u ) = D ( u ) , u = g ( x ) = D ( x ) y = f(u) = D(u),u = g(x) = D(x) y=f(u)=D(u)u=g(x)=D(x)
  8. f ( x ) f(x) f(x)在[a, b]上有最大值但无最小值: f ( x ) = { x , 0 < x ≤ 1 1 , x = 0 f(x)=\left\{ \begin{aligned} x, && 0 < x \leq 1\\ 1, && x = 0 \end{aligned} \right. f(x)={x,1,0<x1x=0
  9. f ( x ) f(x) f(x) ( a , b ) (a, b) (a,b)内连续, f ( a ) ⋅ f ( b ) < 0 f(a) \cdot f(b) < 0 f(a)f(b)<0,但在 ( a , b ) (a, b) (a,b)内方程 f ( x ) = 0 f(x)=0 f(x)=0却无实根: f ( x ) = { − 1 , x = − 1 x 2 + 1 , − 1 < x < 1 1 , x = 0 f(x)=\left\{ \begin{aligned} -1, && x=-1\\ x^2 + 1, && -1<x<1\\ 1, && x = 0 \end{aligned} \right. f(x)=1,x2+1,1,x=11<x<1x=0
  10. lim ⁡ h → 0 f ( a + h ) − f ( a − h ) h \lim\limits_{h \to 0}\frac{f(a+h)-f(a-h)}{h} h0limhf(a+h)f(ah)存在,但函数 f ( x ) f(x) f(x)在点 x = a x=a x=a处不可导(不可跨): f ( x ) = ∣ x ∣ f(x) = |x| f(x)=x
  11. lim ⁡ n → ∞ f ( 1 n ) − f ( 0 ) 1 n \lim\limits_{n \to \infty}\frac{f(\frac{1}{n})-f(0)}{\frac{1}{n}} nlimn1f(n1)f(0)存在但 f ′ ( 0 ) f'(0) f(0)不存在(保双侧): f ( x ) = ∣ x ∣ f(x)=|x| f(x)=x
  12. f ( x ) f(x) f(x)连续且 f ( 0 ) = 0 f(0)=0 f(0)=0 lim ⁡ x → 0 f ( x 2 ) x = a \lim\limits_{x \to 0}\frac{f(x^2)}{x}=a x0limxf(x2)=a,但 f ′ ( 0 ) f'(0) f(0)不存在(阶相同): f ( x ) = ∣ x ∣ f(x)=|x| f(x)=x
  13. m m m为非零整数,且 lim ⁡ m → ∞ f ( x + 1 m ) − f ( x ) 1 m = a \lim\limits_{m \to \infty}\frac{f(x+\frac{1}{m})-f(x)}{\frac{1}{m}}=a mlimm1f(x+m1)f(x)=a,但函数 f ( x ) f(x) f(x) x x x处不可导: f ( x ) = D ( x ) f(x)=D(x) f(x)=D(x)(狄利克雷函数)
  14. f ( x ) 、 g ( x ) f(x)、g(x) f(x)g(x) x 0 x_0 x0处不可导,但 f ( x ) + g ( x ) f(x)+g(x) f(x)+g(x)在这点可导: f ( x ) = { − 1 , x < 0 1 , x ≥ 0 , g ( x ) = { 1 , x < 0 − 1 , x ≥ 0 f(x)=\left\{ \begin{aligned} -1, && x<0\\ 1, && x \geq 0 \end{aligned} \right. , \quad g(x)=\left\{ \begin{aligned} 1, && x<0\\ -1, && x \geq 0 \end{aligned} \right. f(x)={1,1,x<0x0,g(x)={1,1,x<0x0
  15. f ( x ) 、 g ( x ) f(x)、g(x) f(x)g(x) x 0 x_0 x0处均不可导,但 f ( x ) ⋅ g ( x ) f(x)\cdot g(x) f(x)g(x)在这点可导: f ( x ) = g ( x ) = ∣ x ∣ f(x)=g(x)=|x| f(x)=g(x)=x
  16. 函数 z = g ( y ) z=g(y) z=g(y) y 0 y_0 y0不可导,函数 y = f ( x ) y=f(x) y=f(x) x 0 x_0 x0可导,但复合函数 z = g [ f ( x ) ] z=g[f(x)] z=g[f(x)] x 0 x_0 x0可导: z = ∣ y ∣ , y = x 2 z=|y|, y=x^2 z=y,y=x2
  17. 函数 z = g ( y ) z=g(y) z=g(y) y 0 y_0 y0不可导,函数 y = f ( x ) y=f(x) y=f(x)在使得 y 0 = f ( x 0 ) y_0=f(x_0) y0=f(x0) x 0 x_0 x0也不可导,但复合函数 z = g [ f ( x ) ] z=g[f(x)] z=g[f(x)] x 0 x_0 x0可导: z = g ( y ) = 2 y + ∣ y ∣ , y = f ( x ) = 2 3 x − 1 3 ∣ x ∣ , x 0 = 0 z=g(y)=2y+|y|,y=f(x)=\frac{2}{3}x-\frac{1}{3}|x|,x_0=0 z=g(y)=2y+yy=f(x)=32x31xx0=0
  18. 函数 ∣ f ( x ) ∣ |f(x)| f(x)在全体实数上可导,但 f ( x ) f(x) f(x)在全体实数上处处不可导: f ( x ) = D ( x ) f(x)=D(x) f(x)=D(x)(狄利克雷函数)
  19. f ′ ( x 0 ) f'(x_0) f(x0)存在但 lim ⁡ x → x 0 f ′ ( x ) \lim\limits_{x \to x_0}f'(x) xx0limf(x)不存在: f ( x ) = { x 2 sin ⁡ 1 x , x ≠ 0 0 , x = 0 f(x)=\left\{ \begin{aligned} x^2\sin{\frac{1}{x}}, && x\neq0\\ 0, && x = 0 \end{aligned} \right. f(x)=x2sinx1,0,x=0x=0
  20. lim ⁡ x → x 0 f ′ ( x ) \lim\limits_{x \to x_0}f'(x) xx0limf(x)存在但 f ′ ( x 0 ) f'(x_0) f(x0)不存在: f ( x ) = { x , x ≠ 0 1 , x = 0 f(x)=\left\{ \begin{aligned} x, && x\neq0\\ 1, && x = 0 \end{aligned} \right. f(x)={x,1,x=0x=0
  21. 函数 f ( x ) f(x) f(x) ( a , b ) (a, b) (a,b)内可导且有界,但 f ′ ( x ) f'(x) f(x) ( a , b ) (a, b) (a,b)内无界: f ( x ) = x f(x)=\sqrt{x} f(x)=x
  22. 函数 f ′ ( x ) f'(x) f(x)在无穷区域上无界,但 f ( x ) f(x) f(x)在该区域有界: f ( x ) = sin ⁡ x 2 f(x)=\sin{x^2} f(x)=sinx2
  23. 函数 f ( x ) f(x) f(x) R \mathbb{R} R上可导且无界,但 f ′ ( x ) f'(x) f(x) R \mathbb{R} R上有界: f ( x ) = x f(x)=x f(x)=x
  24. 函数 f ( x ) f(x) f(x) R \mathbb{R} R上可导且有界,但 f ′ ( x ) f'(x) f(x) R \mathbb{R} R上无界: f ( x ) = sin ⁡ x 2 f(x)=\sin{x^2} f(x)=sinx2
  25. 已知 x → ∞ x \to \infty x f ′ ( x ) f'(x) f(x)无界,但 x → ∞ x \to \infty x f ( x ) f(x) f(x)有界: f ( x ) = sin ⁡ x 2 f(x)=\sin{x^2} f(x)=sinx2
  26. 函数 f ( x ) f(x) f(x)是非奇非偶函数,但其导函数是偶函数: f ( x ) = x + 1 f(x)=x+1 f(x)=x+1
  27. 函数 f ( x ) f(x) f(x)是非周期函数,但其导函数是周期函数: f ( x ) = sin ⁡ x + x f(x)=\sin{x}+x f(x)=sinx+x
  28. 函数 f ( x ) f(x) f(x)是非奇非偶函数,但其导函数是奇函数: f ( x ) = { x , x > 0 1 − x , x < 0 f(x)=\left\{ \begin{aligned} x, && x>0\\ 1-x, && x<0 \end{aligned} \right. f(x)={x,1x,x>0x<0
  29. f ( x ) f(x) f(x) ( − ∞ , + ∞ ) (-\infty, +\infty) (,+)上有任意阶导数,但在任何一点的任意阶导数均不为零: f ( x ) = e x f(x)=e^x f(x)=ex
  30. f ( x ) f(x) f(x)有界,且 lim ⁡ x → + ∞ f ′ ( x ) \lim\limits_{x \to +\infty}f'(x) x+limf(x)存在,但 lim ⁡ x → + ∞ f ( x ) \lim\limits_{x \to +\infty}f(x) x+limf(x)不存在: f ( x ) = sin ⁡ ln ⁡ x f(x)=\sin{\ln{x}} f(x)=sinlnx
  31. f ( x ) f(x) f(x) ( a , + ∞ ) (a,+\infty) (a,+)内可导, lim ⁡ x → + ∞ f ( x ) \lim\limits_{x \to +\infty}f(x) x+limf(x)存在,但是 lim ⁡ x → + ∞ f ′ ( x ) \lim\limits_{x \to +\infty}f'(x) x+limf(x)不存在: f ( x ) = sin ⁡ x 2 x f(x)=\frac{\sin{x^2}}{x} f(x)=xsinx2
  32. f ( x ) f(x) f(x) g ( x ) g(x) g(x) ( a , b ) (a,b) (a,b)内单增,但 f ( x ) ⋅ g ( x ) f(x) \cdot g(x) f(x)g(x) ( a , b ) (a,b) (a,b)内单减: f ( x ) = g ( x ) = − 1 x f(x)=g(x)=-\frac{1}{x} f(x)=g(x)=x1
  33. 两个凸函数的乘积为凹函数: f ( x ) = g ( x ) = − 1 x f(x)=g(x)=-\frac{1}{x} f(x)=g(x)=x1
  34. 两个凹函数的乘积为凸函数: f ( x ) = x 3 , g ( x ) = − ln ⁡ x , x ∈ ( e − 5 6 , + ∞ ) f(x)=x^3,g(x)=-\ln{x},x∈(e^{-\frac{5}{6}},+\infty) f(x)=x3g(x)=lnxx(e65,+)
  35. 已知 f ′ ( x 0 ) > 0 f'(x_0)>0 f(x0)>0,但 f ( x ) f(x) f(x) x 0 x_0 x0的任何邻域内都不单调: f ( x ) = { x + 2 x 2 sin ⁡ 1 x , x ≠ 0 0 , x = 0 f(x)=\left\{ \begin{aligned} x+2x^2\sin{\frac{1}{x}}, && x\neq 0\\ 0, && x=0 \end{aligned} \right. f(x)=x+2x2sinx1,0,x=0x=0
  36. 函数 f ( x ) f(x) f(x) x 0 x_0 x0处的任意阶导数均为0,但在 x 0 x_0 x0处取到极值: f ( x ) = { e − 1 x 2 , x ≠ 0 0 , x = 0 f(x)=\left\{ \begin{aligned} e^{-\frac{1}{x^2}}, && x\neq 0\\ 0, && x=0 \end{aligned} \right. f(x)={ex21,0,x=0x=0
  37. f ( x ) f(x) f(x)在区间 I I I上有原函数但不可积: ∫ f ( x ) d x = { x 2 sin ⁡ 1 x 2 , 0 < x ≤ 1 0 , x = 0 \int f(x)dx=\left\{ \begin{aligned} x^2\sin{\frac{1}{x^2}}, && 0<x \leq 1\\ 0, && x=0 \end{aligned} \right. f(x)dx=x2sinx21,0,0<x1x=0
  38. ∑ n = 1 ∞ a n \sum\limits_{n=1}^{\infty}a_n n=1an收敛, ∑ n = 1 ∞ a n a n + 1 \sum\limits_{n=1}^{\infty}a_na_{n+1} n=1anan+1也收敛: a n = ( 1 2 ) n a_n=(\frac{1}{2})^n an=(21)n
  39. ∑ n = 1 ∞ a n \sum\limits_{n=1}^{\infty}a_n n=1an收敛, ∑ n = 1 ∞ a n a n + 1 \sum\limits_{n=1}^{\infty}a_na_{n+1} n=1anan+1发散: a n = ( − 1 ) n 1 n a_n=(-1)^n\frac{1}{\sqrt{n}} an=(1)nn 1
  40. 矩阵 A A A B B B等价,有可能行、列均不等价
  41. 只做初等行变换,不改变矩阵列向量的等价关系
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值