再次强调,方阵才有行列式!
行列式尽可能多的压缩了方阵的信息,之前说过行列式代表线性变换中有向面积/有向体积的变化比例
因此,
d
e
t
(
A
)
=
∣
A
∣
=
0
⟺
det(\mathbf A)=| A |=0\iff
det(A)=∣A∣=0⟺矩阵
A
\mathbf A
A不可逆/为奇异矩阵
行列式的运算性质
我们不从显式表达式来认识行列式,因为有计算机运算,而是从公理化的抽象角度来认识行列式
通过三条基本性质,我们就能描述什么是行列式,并且这三条性质能推导出后续所有行列式性质
- 单位阵的 d e t ( I ) = 1 det(\mathbf I)=1 det(I)=1
- 交换行列式的两行,行列式正负反号
推论:所有置换矩阵(即单位阵交换行后的矩阵),行列式为 ± 1 \pm 1 ±1
另外,要说明的是,行的交换次数为奇数次/偶数次,根本上区分了两个不同行列式(反号);
这里隐含一个重要事实:置换(即行的交换)分两类:奇数次行交换和偶数次行交换
①如果5次行交换能得到一种置换,那么23次行交换能得到相同的置换(只要都是奇数次行交换,则一定可以用更多奇数次交换得到相同结果);
②奇数次行交换和偶数次行交换,不可能得到两个相同的矩阵,因为两个行列式必然反号(除非是有相同行的不可逆矩阵/奇异矩阵,其行列式为0)
- 关于“线性性质”
①矩阵某一行元素乘以k,行列式变为k倍: ∣ t a t b c d ∣ = t ∣ a b c d ∣ \left|\begin{array}{cc} t a & t b \\ c & d \end{array}\right|=t\left|\begin{array}{ll} a & b \\ c & d \end{array}\right| ∣ ∣tactbd∣ ∣=t∣ ∣acbd∣ ∣
②行列式的“行”有线性性(强调一行,而非整个行列式有线性性): ∣ a + a ′ b + b ′ c d ∣ = ∣ a b c d ∣ + ∣ a ′ b ′ c d ∣ \left|\begin{array}{cc} a+a^{\prime} & b+b^{\prime} \\ c & d \end{array}\right|=\left|\begin{array}{cc} a & b \\ c & d \end{array}\right|+\left|\begin{array}{cc} a^{\prime} & b^{\prime} \\ c & d \end{array}\right| ∣ ∣a+a′cb+b′d∣ ∣=∣ ∣acbd∣ ∣+∣ ∣a′cb′d∣ ∣
推论:其他重要性质
用上述三条性质推出更多重要性质:
-
A
\mathbf A
A有两行相同,则必有
d
e
t
(
A
)
=
0
det(\mathbf A)=0
det(A)=0
证明:交换相同的两行,行列式的样子不变值也应不变,则通过性质2, d e t ( A ) = − d e t ( A ) ⇒ d e t ( A ) = 0 det(\mathbf A)=-det(\mathbf A)\Rightarrow det(\mathbf A)=0 det(A)=−det(A)⇒det(A)=0
理解:行线性相关,从而矩阵不可逆
- 从
i
i
i行减去
j
j
j行的
k
k
k倍(类似“消元”),行列式不变
证明: ∣ a − k c b − k c c d ∣ = ∣ a b c d ∣ − ∣ k c k c c d ∣ = ∣ a b c d ∣ − k ⋅ 0 \left|\begin{array}{cc}a-kc & b-kc \\c & d\end{array}\right|= \left|\begin{array}{cc}a & b \\c & d\end{array}\right|-\left|\begin{array}{cc}kc & kc \\c & d\end{array}\right|= \left|\begin{array}{cc}a & b \\c & d\end{array}\right|-k\cdot 0 ∣ ∣a−kccb−kcd∣ ∣=∣ ∣acbd∣ ∣−∣ ∣kcckcd∣ ∣=∣ ∣acbd∣ ∣−k⋅0
与“消元”内容联系:矩阵 A = L U \mathbf{A=LU} A=LU分解,相当于消元,则 d e t ( A ) = d e t ( U ) det(\mathbf A)=det(\mathbf U) det(A)=det(U)
-
A
\mathbf A
A有全零行,则必有
d
e
t
(
A
)
=
0
det(\mathbf A)=0
det(A)=0
证明:[发1]对应前一部分的3①中, t = 0 t=0 t=0的情况 [法2]由这里的性质2,可以再次构造“两行相同”的矩阵,又回到性质1
理解:由上一个性质2,“消元”后行列式不变,则这里全零行代表了消元得到全零,即“行线性相关”,从而不可逆
- 对于上三角阵,
∣
d
1
∗
∗
⋯
∗
0
d
2
∗
⋯
∗
0
0
⋱
⋱
⋮
⋮
⋮
⋱
⋱
⋮
0
0
⋯
⋯
d
n
∣
=
∣
d
1
0
0
⋯
0
0
d
2
0
⋯
0
0
0
⋱
⋱
⋮
⋮
⋮
⋱
⋱
⋮
0
0
⋯
⋯
d
n
∣
=
d
1
d
2
⋯
d
n
\left|\begin{array}{ccccc} d_{1} & * & * & \cdots & * \\ 0 & d_{2} & * & \cdots & * \\ 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \cdots & d_{n} \end{array}\right|=\left|\begin{array}{ccccc} d_{1} & 0 & 0 & \cdots & 0 \\ 0 & d_{2} & 0 & \cdots & 0 \\ 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \cdots & d_{n} \end{array}\right|=d_{1} d_{2}\cdots d_n
∣
∣d100⋮0∗d20⋮0∗∗⋱⋱⋯⋯⋯⋱⋱⋯∗∗⋮⋮dn∣
∣=∣
∣d100⋮00d20⋮000⋱⋱⋯⋯⋯⋱⋱⋯00⋮⋮dn∣
∣=d1d2⋯dn
证明:利用“消元”不改变行列式的性质+提取每行倍数因子的性质
这就是说,计算行列式的通用且高效的方法是对其进行消元,并且消元可以用于导出其余大多数性质
但注意,一般的消元过程可能涉及了所有三种初等行变换:①矩阵某行乘以非零常数②交换两行③某一行乘以常数加到另一行,所以过程中可能变号、变倍数
- 矩阵
A
\mathbf A
A不可逆/为奇异矩阵
⟺
\iff
⟺
d
e
t
(
A
)
=
0
det(\mathbf A)=0
det(A)=0
证明:,那么矩阵 A \mathbf A A不可逆一切行列式可以“消元”为上三角阵,若有“主元”为0,这对应了不可逆,也对应了 d e t ( A ) = 0 det(\mathbf A)=0 det(A)=0
小结:结合3和5,只要有全零行(存在非零列向量 x \boldsymbol x x使 A x = 0 \mathbf A \boldsymbol x=\boldsymbol 0 Ax=0),一定不可逆,必有 d e t ( A ) = 0 det(\mathbf A)=0 det(A)=0
即使没有全零行,也可推广:只要矩阵列向量线性相关,同样不可逆,有 d e t ( A ) = 0 det(\mathbf A)=0 det(A)=0
-
d
e
t
(
A
B
)
=
d
e
t
(
A
)
d
e
t
(
B
)
det(\mathbf A\mathbf B)=det(\mathbf A)det(\mathbf B)
det(AB)=det(A)det(B)
推论:
d e t ( A − 1 ) = d e t ( I ) / d e t ( A ) = 1 / d e t ( A ) det(\mathbf A^{-1})=det(\mathbf I)/det(\mathbf A)=1/det(\mathbf A) det(A−1)=det(I)/det(A)=1/det(A),注意式子仅当 A \mathbf A A可逆时/ d e t ( A ) ≠ 0 det(\mathbf A)\neq 0 det(A)=0时成立
d e t ( A 2 ) = ( d e t ( A ) ) 2 det(\mathbf A^{2})=(det(\mathbf A))^2 det(A2)=(det(A))2,但注意 d e t ( 2 A ) = 2 n d e t ( A ) det(2\mathbf A)=2^ndet(\mathbf A) det(2A)=2ndet(A)(原始性质3①,每行提出倍数) -
d
e
t
(
A
T
)
=
d
e
t
(
A
)
det(\mathbf A^{T})=det(\mathbf A)
det(AT)=det(A)
证明:矩阵消元对应LU分解 A = L U \mathbf{A=LU} A=LU,则就是要证明 d e t ( U T L T ) = d e t ( L U ) det(\mathbf U^T \mathbf L^T)=det(\mathbf L \mathbf U) det(UTLT)=det(LU),就是证明 d e t ( U T ) d e t ( L T ) = d e t ( L ) d e t ( U ) det(\mathbf U^T)det(\mathbf L^T)=det(\mathbf L)det(\mathbf U) det(UT)det(LT)=det(L)det(U),由于分解后的两个矩阵 L \mathbf L L和 U \mathbf U U都是三角矩阵,根据上述性质4显然有 d e t ( U T ) = d e t ( U ) det(\mathbf U^T)=det(\mathbf U) det(UT)=det(U)、 d e t ( L T ) = d e t ( L ) det(\mathbf L^T)=det(\mathbf L) det(LT)=det(L)
推论:上述所有关于“行”的性质,通过转置可以得到对应的“列”的性质,这里不再一一列举