本篇笔记介绍行列式的计算方法,如果行列式中的0比较少,一般先使用行列式的性质(常用性质2和性质7)将其化成上三角行列式。尽量将左上角元素先变为1或-1,避免出现分数。求余子式或代数余子式时,往往需要构造与其对应的行列式,并转化为求新行列式的值。涉及符号运算的 n n n阶行列式,解题技巧是“构造行和”,然后化为特殊形式(如上三角、下三角或对角型)的行列式进行求值。
1 例1
D = ∣ 2 1 7 − 1 − 1 2 4 3 2 1 0 − 1 3 2 2 1 ∣ D=\begin{vmatrix} 2&1&7&-1\\ -1&2&4&3\\ 2&1&0&-1\\ 3&2&2&1\\ \end{vmatrix} D= 2−12312127402−13−11
思路:如果行列式中的0比较少,一般先化成上三角行列式。
解:交换第1列和第2列(变号):
D = − ∣ 1 2 7 − 1 2 − 1 4 3 1 2 0 − 1 2 3 2 1 ∣ D=-\begin{vmatrix} 1&2&7&-1\\ 2&-1&4&3\\ 1&2&0&-1\\ 2&3&2&1\\ \end{vmatrix} D=−
12122−1237402−13−11
第1行×(-2)加到第2行,第1行×(-1)加到第3行,第1行×(-2)加到第4行:
= − ∣ 1 2 7 − 1 0 − 5 − 10 5 0 0 − 7 0 0 − 1 − 12 3 ∣ =-\begin{vmatrix} 1&2&7&-1\\ 0&-5&-10&5\\ 0&0&-7&0\\ 0&-1&-12&3\\ \end{vmatrix} =−
10002−50−17−10−7−12−1503
交换第3列和第4列(变号):
= ∣ 1 2 − 1 7 0 − 5 5 − 10 0 0 0 − 7 0 − 1 3 − 12 ∣ =\begin{vmatrix} 1&2&-1&7\\ 0&-5&5&-10\\ 0&0&0&-7\\ 0&-1&3&-12\\ \end{vmatrix} =
10002−50−1−15037−10−7−12
交换第3行和第4行(变号):
= − ∣ 1 2 − 1 7 0 − 5 5 − 10 0 − 1 3 − 12 0 0 0 − 7 ∣ =-\begin{vmatrix} 1&2&-1&7\\ 0&-5&5&-10\\ 0&-1&3&-12\\ 0&0&0&-7\\ \end{vmatrix} =−