通信原理学习笔记6-2:数字解调——抽样和符号同步

采样

根据6-1的推导:在无ISI时,任意位置 n n n上的一个符号 I n I_n In,经过AWGN信道、匹配滤波器、采样后,得到符号 Y n Y_{n} Yn Y n = I n + n n Y_{n}=I_{n}+n_{n} Yn=In+nn

  • 其中, n n n_{n} nn为离散高斯白噪声,原因:
    高斯白噪声 n ( t ) n(t) n(t)经过匹配滤波器 g ( T − t ) g(T-t) g(Tt),得到带限高斯白噪声 n B ( t ) = ∫ − ∞ ∞ n ( τ ) g [ t − ( T − τ ) ] d τ n_B(t)=\int_{-\infty}^{\infty} n(\tau) g[t-(T-\tau)] \mathrm{d} \tau nB(t)=n(τ)g[t(Tτ)]dτ
    带限高斯白噪声 n B ( t ) n_B(t) nB(t) T + n T s T+nT_s T+nTs时刻采样得到离散高斯白噪声 n n n_{n} nn(自相关函数满足 R n n [ n ] = N 0 2 δ [ n ] R_{n n}[n]=\frac{N_{0}}{2} \delta[n] Rnn[n]=2N0δ[n],故噪声方差/功率谱密度 N 0 / 2 N_0/2 N0/2

实际的解调链路(带有符号同步)

比上面的基础链路更加详细的解调原理框图如下
在这里插入图片描述
其中主要是增加了载波恢复和符号同步两个模块

实现中的问题:载波恢复和符号同步

实际中应该考虑信道延迟的问题
发射的射频信号 s R F ( t ) = R e { s ( t ) e j 2 π f c t } s_{RF}(t)=Re\{s(t)e^{j2\pi f_ct}\} sRF(t)=Re{s(t)ej2πfct}
经过了信道延迟 τ \tau τ后,接收到的射频信号 r R F ( t ) = s R F ( t − τ ) + n R F ( t ) = R e { s ( t − τ ) e j 2 π f c ( t − τ ) + n ( t ) e j 2 π f c t } r_{RF}(t)=s_{RF}(t-\tau)+n_{RF}(t)\\=Re\{s(t-\tau)e^{j2\pi f_c(t-\tau)}+n(t)e^{j2\pi f_ct}\} rRF(t)=sRF(tτ)+nRF(t)=Re{s(tτ)ej2πfc(tτ)+n(t)ej2πfct}提取其中的高频载波项 r R F ( t ) = R e { [ s ( t − τ ) + n ( t ) e j 2 π f c τ ] e j 2 π f c ( t − τ ) } = R e { [ s ( t − τ ) + n ( t ) e − j ϕ ] e j ( 2 π f c t + ϕ ) } , 其 中 ϕ = − 2 π f c τ r_{RF}(t)=Re\{[s(t-\tau)+n(t)e^{j2\pi f_c\tau}]e^{j2\pi f_c(t-\tau)}\}\\=Re\{[s(t-\tau)+n(t)e^{-j\phi}]e^{j(2\pi f_ct+\phi)}\},其中\phi=-2\pi f_c \tau rRF(t)=Re{[s(tτ)+n(t)ej2πfcτ]ej2πfc(tτ)}=Re{[s(tτ)+n(t)ejϕ]ej(2πfct+ϕ)},ϕ=2πfcτ

也就是说,信道延迟 τ \tau τ的影响有两方面:

  • 一方面要求下变频时,接收端的高频载波需要对准相位 ϕ \phi ϕ;(只需改变相位,频率不变)
    这实际上就是载波恢复问题,之前在模拟系统中,已经讨论过,载波恢复平方环和Costas环等实现
  • 另一方面,恢复后的基带信号存在时延 τ \tau τ,需要相应的改变抽样判决时刻 n T s + τ nT_s+\tau nTs+τ
    我们需要估计信道的延迟 τ \tau τ(未知),并且 n T s + τ nT_s+\tau nTs+τ时刻抽样判决,这就是符号同步问题。下面讨论符号同步的具体实现方

注意:
虽然上面说过 ϕ = − 2 π f c τ \phi=-2\pi f_c \tau ϕ=2πfcτ,但是 ϕ \phi ϕ τ \tau τ在实际中知道一个不能求另一个,是两个不同的参数,“载波恢复”和“符号同步”两个步骤不能合二为一
原因:
基带信号载波相对而言频率低,因此对 ϕ \phi ϕ的精度要求远高于时延 τ \tau τ,知道 τ \tau τ也无法推出 ϕ \phi ϕ
另外,由于发射机和接收机的振荡器都存在频率漂移,振荡频率 f c f_c fc无法做到一致,即使获得了高精度的 τ \tau τ,带入 ϕ = − 2 π f c τ \phi=-2\pi f_c \tau ϕ=2πfcτ ϕ \phi ϕ也没有任何意义
综上所述,“载波恢复”的步骤必须独立进行,它和符号同步是两个不同的功能

符号同步:判决反馈的符号同步方法

由上,载波恢复后的基带信号带有时延: r ( t ) = s ( t − τ ) + n ( t ) e − j ϕ r(t)=s(t-\tau)+n(t)e^{-j\phi} r(t)=s(tτ)+n(t)ejϕ,其中 s ( t − τ ) = ∑ n = − ∞ ∞ I n g ( t − n T s − τ ) s(t-\tau)=\sum_{n=-\infty}^{\infty} I_{n} g\left(t-n T_{s}-\tau\right) s(tτ)=n=Ing(tnTsτ)

我们希望估计出 τ \tau τ,并在 n T s + τ nT_s+\tau nTs+τ时刻抽样判决

思路是:不在意如何得到 τ \tau τ,而是假设已经进行了最佳的符号同步,并从统计角度推导此时的约束

复习:
对于模型 Y = H { s ( X ) } + n \boldsymbol{Y}=H\{\boldsymbol{s}(\boldsymbol{X})\}+\boldsymbol{n} Y=H{s(X)}+n,当噪声 n \boldsymbol{n} n为高斯分布时,最大似然准则ML等价于最小二乘准则LS
也就是说,条件概率 p Y ∣ X ( Y ∣ X ) = ( 1 2 π σ ) N e − ∣ Y − H { s ( X ) } ∣ 2 / 2 σ 2 p_{\boldsymbol{Y} \mid \boldsymbol{X}}(\boldsymbol{Y} \mid \boldsymbol{X})=\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{N} \mathrm{e}^{-|\boldsymbol{Y}-H\{s(\boldsymbol{X})\}|^{2} / 2 \sigma^{2}} pYX(YX)=(2π σ1)NeYH{s(X)}2/2σ2最大,
等价于似然函数 Λ ( X ) = exp ⁡ { − ∣ Y − H { s ( X ) } ∣ 2 / 2 σ 2 } \Lambda(\boldsymbol{X})=\exp \left\{-|\boldsymbol{Y}-H\{s(\boldsymbol{X})\}|^{2} / 2 \sigma^{2}\right\} Λ(X)=exp{YH{s(X)}2/2σ2}最大,
也等价于损失函数 L ( X ) = ∣ Y − H { s ( X ) } ∣ 2 L(\boldsymbol{X})=|\boldsymbol{Y}-H\{s(\boldsymbol{X})\}|^{2} L(X)=YH{s(X)}2最小,即最小二乘准则

对于这里的模型 r ( t ) = s ( t − τ ) + n ( t ) e − j ϕ r(t)=s(t-\tau)+n(t)e^{-j\phi} r(t)=s(tτ)+n(t)ejϕ
最大似然准则,要使似然函数 Λ ( τ ) = exp ⁡ { − 1 N 0 ∫ T 0 ∣ r ( t ) − s ( t − τ ) ∣ 2   d t } \Lambda(\tau)=\exp \left\{-\frac{1}{N_{0}} \int_{T_{0}}|r(t)-s(t-\tau)|^{2} \mathrm{~d} t\right\} Λ(τ)=exp{N01T0r(t)s(tτ)2 dt}最大
在高斯噪声下,等价为最小二乘准则,要使损失函数 L ( τ ) = ∫ T 0 ∣ r ( t ) − s ( t − τ ) ∣ 2   d t L(\tau)=\int_{T_{0}}|r(t)-s(t -\tau)|^{2} \mathrm{~d} t L(τ)=T0r(t)s(tτ)2 dt最小
展开损失函数得到 L ( τ ) = ∫ T 0 [ r ( t ) − s ( t − τ ) ] [ r ∗ ( t ) − s ∗ ( t − τ ) ] d t = ∫ T 0 ∣ r ( t ) ∣ 2 + ∣ s ( t − τ ) ∣ 2 − [ r ( t ) s ∗ ( t − τ ) + r ∗ ( t ) s ( t − τ ) ] d t = ∫ T 0 ∣ r ( t ) ∣ 2 + ∣ s ( t − τ ) ∣ 2 − ℜ [ r ( t ) ] ℜ [ s ( t − τ ) ] − ℑ [ r ( t ) ] ℑ [ s ( t − τ ) ] d t \begin{aligned} L(\tau)=& \int_{T_{0}}[r(t)-s(t - \tau)]\left[r^{*}(t)-s^{*}(t - \tau)\right] \mathrm{d} t \\ =& \int_{T_{0}}|r(t)|^{2}+|s(t - \tau)|^{2}-\left[r(t) s^{*}(t - \tau)+r^{*}(t) s(t - \tau)\right] \mathrm{d} t \\ =& \int_{T_{0}}|r(t)|^{2}+|s(t - \tau)|^{2}-\Re[r(t)]\Re[s(t-\tau)]-\Im[r(t)]\Im[s(t-\tau)] \mathrm{d} t \\ \end{aligned} L(τ)===T0[r(t)s(tτ)][r(t)s(tτ)]dtT0r(t)2+s(tτ)2[r(t)s(tτ)+r(t)s(tτ)]dtT0r(t)2+s(tτ)2[r(t)][s(tτ)][r(t)][s(tτ)]dt
前两项是确定值,因此使 L ( τ ) L(\tau) L(τ)最小等价于使 Λ L ( τ ) = ∫ T 0 ℜ [ r ( t ) ] ℜ [ s ( t − τ ) ] + ℑ [ r ( t ) ] ℑ [ s ( t − τ ) ] d t \Lambda_{L}(\tau)= \int_{T_{0}}\Re[r(t)]\Re[s(t-\tau)]+\Im[r(t)]\Im[s(t-\tau)] \mathrm{d} t ΛL(τ)=T0[r(t)][s(tτ)]+[r(t)][s(tτ)]dt最大
带入 s ( t − τ ) = ∑ n = − ∞ ∞ I n g ( t − n T s − τ ) s(t-\tau)=\sum_{n=-\infty}^{\infty} I_{n} g\left(t-n T_{s}-\tau\right) s(tτ)=n=Ing(tnTsτ)得到 Λ L ( τ ) = ∫ T 0 ℜ [ r ( t ) ] ∑ n ℜ [ I n ] g ( t − n T s − τ ) d t + ∫ T 0 ℑ [ r ( t ) ] ∑ n ℑ [ I n ] g ( t − n T s − τ ) d t = ∑ n ℜ [ I n ] ∫ T 0 ℜ [ r ( t ) ] g ( t − n T s − τ ) d t + ∑ n ℑ [ I n ] ∫ T 0 ℑ [ r ( t ) ] g ( t − n T s − τ ) d t = ∑ n [ ℜ [ I n ] y n ℜ ( τ ) + ℑ [ I n ] y n ℑ ( τ ) ] 其 中 , y n ℜ ( τ ) = ∫ T 0 ℜ [ r ( t ) ] g ( t − n T s − τ ) d t y n ℑ ( τ ) = ∫ T 0 ℑ [ r ( t ) ] g ( t − n T s − τ ) d t \begin{aligned} \Lambda_{L}(\tau) &=\int_{T_{0}} \Re[r(t)] \sum_{n} \Re\left[I_{n}\right] g\left(t-n T_{s}-\tau\right) \mathrm{d} t+\int_{T_{0}} \Im[r(t)] \sum_{n} \Im\left[I_{n}\right] g\left(t-n T_{s}-\tau\right) \mathrm{d} t \\ &=\sum_{n} \Re\left[I_{n}\right] \int_{T_{0}} \Re[r(t)] g\left(t-n T_{s}-\tau\right) \mathrm{d} t+\sum_{n} \Im\left[I_{n}\right] \int_{T_{0}} \Im[r(t)] g\left(t-n T_{s}-\tau\right) \mathrm{d} t \\ &=\sum_{n}\left[\Re\left[I_{n}\right] y_{n \Re}(\tau)+\Im\left[I_{n}\right] y_{n \Im}(\tau)\right] \\ 其中,y_{n \Re}(\tau) &=\int_{T_{0}} \Re[r(t)] g\left(t-n T_{s}-\tau\right) \mathrm{d} t \\y_{n \Im}(\tau) &=\int_{T_{0}} \Im[r(t)] g\left(t-n T_{s}-\tau\right) \mathrm{d} t \end{aligned} ΛL(τ)yn(τ)yn(τ)=T0[r(t)]n[In]g(tnTsτ)dt+T0[r(t)]n[In]g(tnTsτ)dt=n[In]T0[r(t)]g(tnTsτ)dt+n[In]T0[r(t)]g(tnTsτ)dt=n[[In]yn(τ)+[In]yn(τ)]=T0[r(t)]g(tnTsτ)dt=T0[r(t)]g(tnTsτ)dt
Λ L ( τ ) \Lambda_{L}(\tau) ΛL(τ)取最大的充分条件为: d Λ L ( τ ) d τ = ∑ n [ ℜ [ I n ] d y n ℜ ( τ ) d τ + ℑ [ I n ] d y n ℑ ( τ ) d τ ] = 0 \frac{d \Lambda_{L}(\tau)}{\mathrm{d} \tau}=\sum_{n}\left[\Re\left[I_{n}\right] \frac{\mathrm{d} y_{n \Re}(\tau)}{\mathrm{d} \tau}+\Im\left[I_{n}\right] \frac{\mathrm{d} y_{n \Im}(\tau)}{\mathrm{d} \tau}\right]=0 dτdΛL(τ)=n[[In]dτdyn(τ)+[In]dτdyn(τ)]=0

由上述推导,得到判决反馈的符号同步原理框图:
在这里插入图片描述

  • 上面推导中的 y n ℜ ( τ ) = ∫ T 0 ℜ [ r ( t ) ] g ( t − n T s − τ ) d t y_{n \Re}(\tau) =\int_{T_{0}} \Re[r(t)] g\left(t-n T_{s}-\tau\right) \mathrm{d} t yn(τ)=T0[r(t)]g(tnTsτ)dt y n ℑ ( τ ) = ∫ T 0 ℑ [ r ( t ) ] g ( t − n T s − τ ) d t y_{n \Im}(\tau) =\int_{T_{0}} \Im[r(t)] g\left(t-n T_{s}-\tau\right) \mathrm{d} t yn(τ)=T0[r(t)]g(tnTsτ)dt,从表达式可见,分别对应基带信号 r ( t ) r(t) r(t)的I路/Q路经过匹配滤波器 g ( T − τ ) g(T-\tau) g(Tτ)后的结果
  • 图中存在一个类似于锁相环的环路,保证了 d Λ L ( τ ) d τ = ∑ n [ ℜ [ I n ] d y n ℜ ( τ ) d τ + ℑ [ I n ] d y n ℑ ( τ ) d τ ] = 0 \frac{d \Lambda_{L}(\tau)}{\mathrm{d} \tau}=\sum_{n}\left[\Re\left[I_{n}\right] \frac{\mathrm{d} y_{n \Re}(\tau)}{\mathrm{d} \tau}+\Im\left[I_{n}\right] \frac{\mathrm{d} y_{n \Im}(\tau)}{\mathrm{d} \tau}\right]=0 dτdΛL(τ)=n[[In]dτdyn(τ)+[In]dτdyn(τ)]=0条件成立
    当采样时刻正确,加法器输出接近于0;否则,加法器的非零输出控制压控时钟VCC,从而调制采样时刻(直到加法器输出接近于0)
    要注意,这里用到了符号 I n I_n In,因此需要将解调出来的符号 I n I_n In反馈给符号同步模块,故称为“判决反馈的符号同步方法”,当然,在判决存在错误时本方法性能下降。
  • 压控时钟VCC:就是在VCO输出正弦信号的基础上,将其整形为同频同相的方波,并用于控制抽样时刻
  • 加法器实际上用LPF实现

符号同步:无判决反馈的符号同步方法

为了摆脱对于信息符号的依赖,将似然函数对将信息符号做统计平均,得到平均的似然函数,并经过一系列处理得到简洁的似然函数 Λ ~ L ( τ ) ≈ ∑ n y n ′ 2 ( τ ) \tilde{\Lambda}_{L}(\tau) \approx \sum_{n} y_{n}^{\prime 2}(\tau) Λ~L(τ)nyn2(τ)其中, y 2 n ′ ( τ ) = 2 y n ℜ ( τ ) , n = 0 , 1 , ⋯   , N − 1 , y 2 n + 1 ′ ( τ ) = 2 y n ℑ ( τ ) , n = 0 , 1 , ⋯   , N − 1 y_{2 n}^{\prime}(\tau)=2 y_{n \Re}(\tau), n=0,1, \cdots, N-1 ,\quad y_{2 n+1}^{\prime}(\tau)=2 y_{n \Im}(\tau), n=0,1, \cdots, N-1 y2n(τ)=2yn(τ),n=0,1,,N1,y2n+1(τ)=2yn(τ),n=0,1,,N1
上式取得极大值的充分条件: d Λ ~ L ( τ ) d τ = 0 \frac{d \tilde{\Lambda}_{L}(\tau)}{\mathrm{d} \tau}=0 dτdΛ~L(τ)=0
实现时,又可以写为两种形式:

  1. ∑ n d y n ′ 2 ( τ ) d τ = 0 \sum_{n} \frac{\mathrm{d} y_{n}^{\prime 2}(\tau)}{\mathrm{d} \tau}=0 ndτdyn2(τ)=0,原理框图如下
    在这里插入图片描述
  2. ∑ n y n ′ ( τ ) d y n ′ ( τ ) d τ = 0 \sum_{n} y_{n}^{\prime}(\tau) \frac{\mathrm{d} y_{n}^{\prime}(\tau)}{\mathrm{d} \tau}=0 nyn(τ)dτdyn(τ)=0,原理框图如下
    在这里插入图片描述
    ps. 图中只画出了I路信号,Q路处理方式与之相同

与载波恢复技术对比:
第一种类似于载波恢复中的平方环
第二种类似于载波恢复中的Costas环
区别是,载波恢复中,微分的结果是相移 π / 2 \pi/2 π/2,而这里用了显式的微分表达;另外,这里的加法器起到了环路滤波器的作用

  • 2
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值