HDU 4035 Maze (概率DP)

/*
lxhgww被困在迷宫里,迷宫是一棵n顶点的树,lxhgww初始在点1。每个点三种可能
    1.被杀,回到起点1(概率为k[i])
    2.逃脱,即逃出迷宫(概率为e[i])
    3.随机的走一条与改点相连的边(包括它与它父亲相连的那条边
求逃出迷宫期望的步数。

设E[i]表示在结点i时期望的步数, fi表示点i的父亲, m表示点i的度数,j表示i的子节点

    当i为叶子结点时,E[i] = k[i] * E[1] + e[i] * 0 + (1-k[i]-e[i]) * (E[fi] + 1)
                          = k[i] * E[1] + (1-k[i]-e[i]) * E[fi] + (1-k[i]-e[i])
    当i为非叶子节点时, E[i] = k[i] * E[1] + e[i] * 0 + (1-k[i]-e[i]) * ( (E[fi]+∑E[j]) / m + 1 )
                            = k[i] * E[1] + (1-k[i]-e[i])/m * E[fi] + (1-k[i]-e[i]) / m * ( ∑E[j] + m )

令E[i] = A[i] * E[1] + B[i] * E[fi] + C[i]

    当i为叶子结点时, A[i] = k[i], B[i] = (1-k[i]-e[i]), C[i] = (1-k[i]-e[i])

    当i为非叶子结点时, E[i] = k[i] * E[1] + (1-k[i]-e[i]) * ( (E[fi] + ∑(A[j]*E[1] + B[j]*E[i] + C[j])) / m + 1 )
                            = (k[i]+(1-k[i]-e[i])/m*∑A[j]) * E[1] + (1-k[i]-e[i])/m * E[fi] + ((1-k[i]-e[i])/m*∑B[j]) * E[i] + (∑C[j]+m)*(1-k[i]-e[i])/m;
                       令(1-k[i]-e[i])/m*∑B[j] = X, AA = (k[i]+(1-k[i]-e[i])/m*∑A[j]), BB = (1-k[i]-e[i])/m, CC = (∑C[j]+m)*(1-k[i]-e[i])/m

                       则E[i] = AA * E[1] + BB * E[fi] + X * E[i] + CC
                              = AA/(1-X) * E[1] + BB/(1-X) * E[fi] + CC/(1-x)

                       因此, A[i] = AA/(1-X), B[i] = BB/(1-X), C[i] = CC/(1-x)
    逆推出A[1], B[1], C[1],即可得到答案

*/

#include<cstdio>
#include<cstring>
#include<set>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn = 1e4 + 10;
const double eps = 1e-12;
double A[maxn], B[maxn], C[maxn], dp[maxn];
double K[maxn], E[maxn];
vector<int> G[maxn];
int n;

void Cal(int u, int fa)
{
	double m = (1-K[u]-E[u]) / G[u].size();
    if(G[u].size() == 1 && G[u][0] == fa) {
    	A[u] = K[u];
    	B[u] = (1-K[u]-E[u]);
    	C[u] = (1 - K[u] - E[u]);
    	return;
    }
    for(int i = 0; i < (int)G[u].size(); i++) {
    	int v = G[u][i];
    	if(v == fa) continue;
    	Cal(v, u);
    }
    double a = 0, b = 0, c = 0, x;
    for(int i = 0; i < (int)G[u].size(); i++) {
    	int v = G[u][i];
     	if(v == fa) continue;
        a += A[v]; b += B[v]; c += C[v];
    }
    b *= m;
    x = 1 - b;
    A[u] = (K[u] + m*a) / x;
    B[u] = m / x;
    C[u] = (c + G[u].size()) * m / x;
}

int main()
{
	int T;
	scanf("%d", &T);
	for(int kase = 1; kase <= T; kase++)
	{
         scanf("%d", &n);
         for(int i = 1; i <= n; i++) G[i].clear();
         for(int i = 1; i <= n-1; i++) {
         	int u, v;
         	scanf("%d%d", &u, &v);
         	G[u].push_back(v);
         	G[v].push_back(u);
         }
         for(int i = 1; i <= n; i++) {
         	scanf("%lf%lf", &K[i], &E[i]);
         	K[i] /= 100.0;
         	E[i] /= 100.0;
         }
         Cal(1, 0);
         printf("Case %d: ", kase);
         if(1 - A[1] < eps) printf("impossible\n");
         else printf("%.6f\n", C[1] / (1.0 - A[1]));
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值