还没开始宣传,就收到了这样的评价,我有点破防了

还没开始宣传,就收到了这样的评价,我有点破防了

👋 你好,我是《Yocto项目实战教程》的作者。

这本书正式上市其实才没多久,我还在纠结怎么宣传、怎么介绍,甚至连朋友圈都还没怎么发。
在这里插入图片描述

结果,前几天收到一个读者的留言,让我有点破防了。


他是一位做 OpenBMC 的 Linux 开发工程师,悄悄在京东下单买了书。收到后,他主动加我微信,然后说:

“书写得不错,我也是做 linux 开发的(openbmc),以后得多多向您请教 😁
这书太新了,我看日期还是今年的。”

后来我一看,他还专门去京东写了评价、拍了几张照片,并且说:

“作者很厉害,内容前后有逻辑,自己是做linux系统开发的,基本自己工作中遇到的知识点都有讲解!”
“👍👍👍”


坦白说,写这本书的过程一点也不轻松:

  • 我是从一行一行代码搭出来的内容,不是“复制配方”,而是每个章节都和实际项目有关;
  • 我自己就来自系统开发一线,每一节都在想“写下这段话,能帮读者解决什么问题?”

所以,当我看到这些真实的反馈时,我真的有点感动。


写书最大的回报,是“共鸣”

我知道这本书还有很多可以优化的地方,甚至书还没广泛宣传、还没有太多媒体推荐。

但就是这样,在没有炒作、没有营销的情况下,有人愿意主动给出这样的评价:

这不是“做内容”的人最幸福的时刻吗?


所以,感谢每一个悄悄买书、认真阅读的你

📕 这本《Yocto项目实战教程》,可能不会一夜爆红。

但它会成为越来越多嵌入式工程师,走向系统开发道路上的伙伴。

我会继续创作,把 Yocto、BSP、驱动、系统架构这些原本枯燥的知识,讲得更清楚、写得更实用。


📮 如果你也读了这本书,有任何想法,欢迎随时私信我。

📺 视频讲解、更新笔记、实战补充内容,也都会发布在 B站“嵌入式Jerry”。


📌 这不是一本讲完就忘的书,而是你整个嵌入式职业路上的参考书。

谢谢你的信任。

—— Jerry 敬上

如果你有多个评价指标,可以使用多目标优化来进行超参数调优。NNI 提供了一些内置的多目标优化算法,如 NSGA-N 和 MOO-E。下面是一个使用 NSGA-N 算法进行多目标优化的示例: 1. 创建一个配置文件(例如 config.yml),指定你的神经网络模型和超参数的搜索空间。确保将 `optimize_mode` 设置为 `maximize` 或 `minimize`,以便指定每个评价指标的优化方向。示例如下: ```yaml authorName: your_name experimentName: multi_obj_tuning trial: command: python3 train.py codeDir: . gpuNum: 0 tuner: builtinTunerName: NSGAN classArgs: optimize_mode: minimize population_size: 10 mutation_probability: 0.1 searchSpacePath: search_space.json ``` 2. 创建一个搜索空间文件(例如 search_space.json),定义超参数的搜索范围。示例如下: ```json { "learning_rate": { "_type": "choice", "_value": [0.001, 0.01, 0.1] }, "batch_size": { "_type": "choice", "_value": [16, 32, 64] }, "hidden_units": { "_type": "choice", "_value": [[64, 32], [128, 64], [256, 128]] } } ``` 3. 在你的代码中,确保你的训练逻辑可以接受超参数作为输入,并将其用于训练过程。同时,确保你的训练逻辑可以输出多个评价指标的结果。例如: ```python import argparse def train_model(learning_rate, batch_size, hidden_units): # 在这里使用超参数训练模型 # 计算多个评价指标的结果 pass if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--learning_rate', type=float, default=0.01) parser.add_argument('--batch_size', type=int, default=32) parser.add_argument('--hidden_units', type=int, nargs='+', default=[64, 32]) args = parser.parse_args() train_model(args.learning_rate, args.batch_size, args.hidden_units) ``` 4. 在终端中运行以下命令启动 NNI 的超参数调优: ``` nnictl create --config config.yml ``` 5. NNI 将使用 NSGA-N 算法来搜索超参数组合,以优化多个评价指标。在每个试验(trial)中运行你的训练代码,并记录多个评价指标的结果。 6. 最后,你可以使用 NNI 提供的 Web UI 或命令行工具来监视试验的进展和结果。NNI 将提供一个称为 "Pareto Front" 的可视化工具,显示在不同评价指标之间达到最佳平衡的一组超参数组合。 这样,你就可以使用 NNI 进行多目标优化,在多个评价指标之间找到最佳的超参数组合。记得根据自己的需求进行配置和调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值