YOLOv7改进标签分配策略:基于TOOD的任务对齐学习(TAL)技术在单阶段目标检测中刷新新纪录
目标检测是计算机视觉领域中的重要任务之一,而YOLO(You Only Look Once)是一种流行的单阶段目标检测算法。近年来,YOLOv7对其标签分配策略进行了改进,引入了基于TOOD(Task Ownership and Object Detection)的任务对齐学习(TAL)技术,以进一步提高检测性能。
任务对齐学习(TAL)是一种新颖的方法,旨在通过将任务与模型的学习过程对齐来提高性能。在YOLOv7中,TAL被应用于标签分配策略的改进,以提高目标检测的准确性和效率。
下面我们将详细介绍YOLOv7中改进的标签分配策略,并提供相应的源代码实现。
-
TOOD标签分配策略
TOOD标签分配策略是YOLOv7中引入的一种改进方法。该策略首先将输入图像分为不同的网格单元,然后通过计算每个单元与目标框之间的IOU(Intersection over Union)值,将目标分配给具有最高IOU值的单元。源代码实现:
def assign_boxe