改进YOLOv5系列:YOLOv5融合Swin Transformer V2结构

本文探讨了将YOLOv5与Swin Transformer V2结合,以增强目标检测模型的准确性和速度。通过在YOLOv5的Darknet骨干网络中引入Swin Transformer V2的自注意力机制和特征融合模块,实验结果显示在COCO等数据集上检测性能有所提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

改进YOLOv5系列:YOLOv5融合Swin Transformer V2结构

引言:
计算机视觉领域的发展一直在追求更高的准确性和更快的检测速度。YOLOv5是目标检测领域的热门模型,而Swin Transformer V2则是近期提出的一种高效的图像分类模型。本文旨在将YOLOv5与Swin Transformer V2相结合,探索一种新型的目标检测模型,以进一步提升检测精度和运行速度。

一、简介
目标检测是计算机视觉中的重要任务,它可以识别和定位图像中的物体。YOLOv5是一系列基于深度学习的目标检测模型,采用单阶段检测的思想,在保持较高准确性的同时实现了较快的检测速度。而Swin Transformer V2是一种新型的图像分类模型,通过自注意力机制和局部位置编码模块实现了高效的特征提取。将YOLOv5与Swin Transformer V2相结合,有望进一步提升目标检测的性能。

二、方法
我们的目标是融合YOLOv5和Swin Transformer V2的结构,以实现更好的目标检测性能。具体而言,我们将在YOLOv5的骨干网络中引入Swin Transformer V2的一些关键组件。

  1. 骨干网络改进
    在YOLOv5的骨干网络Darknet中,我们将替换原有的卷积层和池化层,并引入Swin Transformer V2的自注意力机制。通过自注意力机制,模型可以自动学习到图像中不同位置的关键特征,有助于提高目标检测的准
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值