改进YOLOv5系列:YOLOv5融合Swin Transformer V2结构
引言:
计算机视觉领域的发展一直在追求更高的准确性和更快的检测速度。YOLOv5是目标检测领域的热门模型,而Swin Transformer V2则是近期提出的一种高效的图像分类模型。本文旨在将YOLOv5与Swin Transformer V2相结合,探索一种新型的目标检测模型,以进一步提升检测精度和运行速度。
一、简介
目标检测是计算机视觉中的重要任务,它可以识别和定位图像中的物体。YOLOv5是一系列基于深度学习的目标检测模型,采用单阶段检测的思想,在保持较高准确性的同时实现了较快的检测速度。而Swin Transformer V2是一种新型的图像分类模型,通过自注意力机制和局部位置编码模块实现了高效的特征提取。将YOLOv5与Swin Transformer V2相结合,有望进一步提升目标检测的性能。
二、方法
我们的目标是融合YOLOv5和Swin Transformer V2的结构,以实现更好的目标检测性能。具体而言,我们将在YOLOv5的骨干网络中引入Swin Transformer V2的一些关键组件。
- 骨干网络改进
在YOLOv5的骨干网络Darknet中,我们将替换原有的卷积层和池化层,并引入Swin Transformer V2的自注意力机制。通过自注意力机制,模型可以自动学习到图像中不同位置的关键特征,有助于提高目标检测的准