分类问题中如何选出好的连续型特征?

本文探讨了卡方检验和单因素方差分析中的r2指标在特征选择中的应用,指出卡方检验适用于离散型特征,而r2适用于连续型特征。通过比较r2和互信息挑选出的特征差异,强调了在实际应用中选择合适指标的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://www.cnblogs.com/pinard/p/9032759.html

这篇博文说得很好,这里只是针对第一种过滤法提供一些补充,其中卡方检验适合分类问题中的离散型特征,比如特征取值是1,2,3这种离散值,但不适合连续型特征的情况。连续型特征还有一个指标就是单因素方差分析中的r2 = SSA/SST,即属于不同类别的特征的平均值之间的方差之和/所有数据的方差。在我的数据中,r2和互信息挑出的特征差异很大,这在实际使用中是需要注意的,该选择哪个指标更适合自己的数据。

AUC(Area Under the Curve)值是一种衡量分类模型性能的重要指标,它通过ROC曲线下的面积来评估模型在不同阈值下的分类准确性。在特征选择过程中,AUC可以用来评估单个特征特征组合的分类效果。 参考资源链接:[AUC驱动的特征选择:从单特征到多特征优化](https://wenku.csdn.net/doc/3izivbat1s?spm=1055.2569.3001.10343) 要根据AUC值评估特征选择的效果,首先需要对每个特征单独计算其在训练集上的AUC值。对于连续型特征,可以先进行特征离散化,将其转化为离散类别,然后使用分类算法(如逻辑回归)训练模型并计算AUC。对于离散特征,直接使用分类算法训练并计算AUC即可。 在特征选择过程中,可以通过比较各个特征的AUC值来初步筛选出对模型贡献较大的特征。此外,AUC值也可以用来评估特征交叉(交互特征)的效果。通过比较不同特征组合的AUC值,可以选出最佳的特征组合。 结合卡方检验、互信息和逻辑回归可以进一步提高特征选择的准确性。卡方检验用于评估分类变量之间的独立性,通过卡方值可以筛选出与目标变量关联性强的特征。互信息衡量的是两个变量之间的相互信息量,通过互信息值可以筛选出包含更多目标信息的特征。逻辑回归模型的系数可以帮助我们了解特征对模型预测的影响力,具有较大系数绝对值的特征通常被认为对模型的预测能力贡献较大。 在实际操作中,可以先使用卡方检验和互信息选择出一批候选特征,然后利用逻辑回归模型的系数对这些特征进行再次筛选。最后,结合AUC值对特征组合进行评估和选择,选出效果最好的特征子集。 为了深入理解和应用这些方法,可以参考《AUC驱动的特征选择:从单特征到多特征优化》一书。该书详细探讨了AUC在特征选择中的应用,以及如何结合其他技术进行更准确的特征选择。掌握这些技巧后,你可以更有效地提高模型的性能和解释性。 参考资源链接:[AUC驱动的特征选择:从单特征到多特征优化](https://wenku.csdn.net/doc/3izivbat1s?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值