分类问题中如何选出好的连续型特征?

本文探讨了卡方检验和单因素方差分析中的r2指标在特征选择中的应用,指出卡方检验适用于离散型特征,而r2适用于连续型特征。通过比较r2和互信息挑选出的特征差异,强调了在实际应用中选择合适指标的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://www.cnblogs.com/pinard/p/9032759.html

这篇博文说得很好,这里只是针对第一种过滤法提供一些补充,其中卡方检验适合分类问题中的离散型特征,比如特征取值是1,2,3这种离散值,但不适合连续型特征的情况。连续型特征还有一个指标就是单因素方差分析中的r2 = SSA/SST,即属于不同类别的特征的平均值之间的方差之和/所有数据的方差。在我的数据中,r2和互信息挑出的特征差异很大,这在实际使用中是需要注意的,该选择哪个指标更适合自己的数据。

内容概要:本文详细介绍了基于结构不变补偿的电液伺服系统低阶线性主动干扰抑制控制(ADRC)方法的实现过程。首先定义了电液伺服系统的基本参数,并实现了结构不变补偿(SIC)函数,通过补偿非线性项和干扰,将原始系统转化为一阶积分链结构。接着,设计了低阶线性ADRC控制器,包含扩展状态观测器(ESO)和控制律,用于估计系统状态和总干扰,并实现简单有效的控制。文章还展示了系统仿真与对比实验,对比了低阶ADRC与传统PID控制器的性能,证明了ADRC在处理系统非线性和外部干扰方面的优越性。此外,文章深入分析了参数调整与稳定性,提出了频域稳定性分析和b0参数调整方法,确保系统在参数不确定性下的鲁棒稳定性。最后,文章通过综合实验验证了该方法的有效性,并提供了参数敏感性分析和工程实用性指导。 适合人群:具备一定自动化控制基础,特别是对电液伺服系统和主动干扰抑制控制感兴趣的科研人员和工程师。 使用场景及目标:①理解电液伺服系统的建模与控制方法;②掌握低阶线性ADRC的设计原理和实现步骤;③学习如何通过结构不变补偿简化复杂系统的控制设计;④进行系统仿真与实验验证,评估不同控制方法的性能;⑤掌握参数调整与稳定性分析技巧,确保控制系统在实际应用中的可靠性和鲁棒性。 阅读建议:本文内容详尽,涉及多个控制理论和技术细节。读者应首先理解电液伺服系统的基本原理和ADRC的核心思想,然后逐步深入学习SIC补偿、ESO设计、控制律实现等内容。同时,结合提供的代码示例进行实践操作,通过调整参数和运行仿真,加深对理论的理解。对于希望进一步探索的读者,可以关注文中提到的高级话题,如频域稳定性分析、参数敏感性分析等,以提升对系统的全面掌控能力。
AUC(Area Under the Curve)值是一种衡量分类模型性能的重要指标,它通过ROC曲线下的面积来评估模型在不同阈值下的分类准确性。在特征选择过程中,AUC可以用来评估单个特征特征组合的分类效果。 参考资源链接:[AUC驱动的特征选择:从单特征到多特征优化](https://wenku.csdn.net/doc/3izivbat1s?spm=1055.2569.3001.10343) 要根据AUC值评估特征选择的效果,首先需要对每个特征单独计算其在训练集上的AUC值。对于连续型特征,可以先进行特征离散化,将其转化为离散类别,然后使用分类算法(如逻辑回归)训练模型并计算AUC。对于离散特征,直接使用分类算法训练并计算AUC即可。 在特征选择过程中,可以通过比较各个特征的AUC值来初步筛选出对模型贡献较大的特征。此外,AUC值也可以用来评估特征交叉(交互特征)的效果。通过比较不同特征组合的AUC值,可以选出最佳的特征组合。 结合卡方检验、互信息和逻辑回归可以进一步提高特征选择的准确性。卡方检验用于评估分类变量之间的独立性,通过卡方值可以筛选出与目标变量关联性强的特征。互信息衡量的是两个变量之间的相互信息量,通过互信息值可以筛选出包含更多目标信息的特征。逻辑回归模型的系数可以帮助我们了解特征对模型预测的影响力,具有较大系数绝对值的特征通常被认为对模型的预测能力贡献较大。 在实际操作中,可以先使用卡方检验和互信息选择出一批候选特征,然后利用逻辑回归模型的系数对这些特征进行再次筛选。最后,结合AUC值对特征组合进行评估和选择,选出效果最好的特征子集。 为了深入理解和应用这些方法,可以参考《AUC驱动的特征选择:从单特征到多特征优化》一书。该书详细探讨了AUC在特征选择中的应用,以及如何结合其他技术进行更准确的特征选择。掌握这些技巧后,你可以更有效地提高模型的性能和解释性。 参考资源链接:[AUC驱动的特征选择:从单特征到多特征优化](https://wenku.csdn.net/doc/3izivbat1s?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值