手把手教你用 Pandas 绘制全球人口可视化交互图表

作为一名数据工作者,我特别喜欢用Python创建美观且易懂的可视化图表,而且技术难度小,不会花费大量时间。

交互式可视化也是如此,因此我花了很长时间寻找Python中好用的库。能创建交互式可视化图表的库有很多,但当使用Pandas时,很容易遇到各种各样的问题。

今天,我就来手把手教你如何直接使用Pandas创建出交互式可视化效果。

01 安装库

为了轻松创建交互式可视化,我们需要安装Cufflinks。这是一个将Pandas与Plotly连接起来的库,从而我们能够直接从Pandas创建可视化效果。

首先,确保安装Pandas并在终端上运行以下命令:

pip install pandas
pip install plotly

注意,你也可以使用conda安装Plotly

conda install -c plotly

安装 Plotly 后,运行以下命令安装 Cufflinks:

pip install cufflinks

02 导入库

接下来要导入以下库:

import pandas as pd
import cufflinks as cf
from IPython.display import display,HTMLcf.set_config_file(sharing='public',theme='ggplot',offline=True)

在这里,我用的是 ‘ggplot’ 主题,你也可以随意选择任何想要的主题。运行命令 cf.getThemes() 以获取所有可用的主题。

要在以下部分中使用 Pandas 进行交互式可视化,我们只需要使用语法 dataframe.iplot()

03 处理数据

在本文中,我们将使用人口数据框。

下载文件后,移动到 Python 脚本所在的位置,然后在 Pandas 数据框中进行读取,如下所示。

df_population = pd.read_csv('population_total.csv')

数据框中包含了世界上大多数国家多年来的人口数据,如下所示:

在这里插入图片描述
在使用之前,我们需要对其进行处理,删除空值,重新调整,然后选择几个国家来测试交互式绘图。

代码如下:

# dropping null values
df_population = df_population.dropna()# reshaping the dataframe
df_population = df_population.pivot(index='year', columns='country',
values='population')# selecting 5 countries
df_population = df_population[[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值